Mishal23 commited on
Commit
5f9760f
·
verified ·
1 Parent(s): 5c308f1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -57
app.py CHANGED
@@ -1,64 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
 
 
 
 
 
 
 
64
  demo.launch()
 
1
+ # app.py
2
+
3
+ import pandas as pd
4
+ from fastapi import FastAPI
5
+ from pydantic import BaseModel
6
+ from sentence_transformers import SentenceTransformer
7
+ import faiss
8
+ from datasets import load_dataset
9
+
10
+ # Load the dataset
11
+ support_data = load_dataset("rjac/e-commerce-customer-support-qa")
12
+ faq_data = pd.read_csv("Ecommerce_FAQs.csv")
13
+
14
+ # Data preparation
15
+ faq_data.rename(columns={'prompt': 'Question', 'response': 'Answer'}, inplace=True)
16
+ faq_data = faq_data[['Question', 'Answer']]
17
+ support_data_df = pd.DataFrame(support_data['train'])
18
+
19
+ def extract_conversation(data):
20
+ try:
21
+ parts = data.split("\n\n")
22
+ question = parts[1].split(": ", 1)[1] if len(parts) > 1 else ""
23
+ answer = parts[2].split(": ", 1)[1] if len(parts) > 2 else ""
24
+ return pd.Series({"Question": question, "Answer": answer})
25
+ except IndexError:
26
+ return pd.Series({"Question": "", "Answer": ""})
27
+
28
+ support_data_df[['Question', 'Answer']] = support_data_df['conversation'].apply(extract_conversation)
29
+ combined_data = pd.concat([faq_data, support_data_df[['Question', 'Answer']]], ignore_index=True)
30
+
31
+ # Initialize SBERT Model
32
+ model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
33
+
34
+ # Generate and Index Embeddings
35
+ questions = combined_data['Question'].tolist()
36
+ embeddings = model.encode(questions, convert_to_tensor=True)
37
+ index = faiss.IndexFlatL2(embeddings.shape[1])
38
+ index.add(embeddings.cpu().numpy())
39
+
40
+ # Define FastAPI app and model
41
+ app = FastAPI()
42
+
43
+ class Query(BaseModel):
44
+ question: str
45
+
46
+ @app.post("/ask")
47
+ def ask_bot(query: Query):
48
+ question_embedding = model.encode([query.question], convert_to_tensor=True)
49
+ question_embedding_np = question_embedding.cpu().numpy()
50
+ _, closest_index = index.search(question_embedding_np, k=1)
51
+ best_match_idx = closest_index[0][0]
52
+ answer = combined_data.iloc[best_match_idx]['Answer']
53
+ return {"answer": answer}
54
+
55
+ # Gradio Interface
56
+
57
  import gradio as gr
58
+ import requests
59
+
60
+ # Define the URL of your FastAPI endpoint
61
+ API_URL = "http://localhost:8000/ask" # Update to your deployed FastAPI URL if needed
62
+
63
+ def respond(message, history: list[tuple[str, str]]):
64
+ payload = {"question": message}
65
+
66
+ try:
67
+ response = requests.post(API_URL, json=payload)
68
+ response.raise_for_status()
69
+ response_data = response.json()
70
+ answer = response_data.get("answer", "Sorry, I didn't get that.")
71
+ except requests.exceptions.RequestException as e:
72
+ answer = f"Request Error: {str(e)}"
73
+
74
+ # Update history
75
+ history.append((message, answer))
76
+ return answer, history
77
+
78
+ # Gradio Chat Interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  demo = gr.ChatInterface(
80
  respond,
 
 
 
 
 
 
 
 
 
 
 
 
81
  )
82
 
 
83
  if __name__ == "__main__":
84
+ import threading
85
+ import uvicorn
86
+
87
+ # Run FastAPI in a separate thread
88
+ threading.Thread(target=uvicorn.run, args=(app,), kwargs={"host": "0.0.0.0", "port": 8000}).start()
89
+
90
+ # Launch Gradio interface
91
  demo.launch()