Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import libraries
|
2 |
+
import pandas as pd
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from fastapi.responses import HTMLResponse
|
5 |
+
from fastapi.middleware.cors import CORSMiddleware
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
import faiss
|
8 |
+
from datasets import load_dataset
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
+
import torch
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
# Load the Dataset from Hugging Face and FAQ CSV
|
14 |
+
support_data = load_dataset("rjac/e-commerce-customer-support-qa")
|
15 |
+
|
16 |
+
# Load FAQ data from a local CSV file directly
|
17 |
+
faq_data = pd.read_csv("Ecommerce_FAQs.csv")
|
18 |
+
|
19 |
+
# Preprocess and Clean Data
|
20 |
+
faq_data.rename(columns={'prompt': 'Question', 'response': 'Answer'}, inplace=True)
|
21 |
+
faq_data = faq_data[['Question', 'Answer']]
|
22 |
+
support_data_df = pd.DataFrame(support_data['train'])
|
23 |
+
|
24 |
+
# Extract question-answer pairs from the conversation field
|
25 |
+
def extract_conversation(data):
|
26 |
+
try:
|
27 |
+
parts = data.split("\n\n")
|
28 |
+
question = parts[1].split(": ", 1)[1] if len(parts) > 1 else ""
|
29 |
+
answer = parts[2].split(": ", 1)[1] if len(parts) > 2 else ""
|
30 |
+
return pd.Series({"Question": question, "Answer": answer})
|
31 |
+
except IndexError:
|
32 |
+
return pd.Series({"Question": "", "Answer": ""})
|
33 |
+
|
34 |
+
# Apply extraction function
|
35 |
+
support_data_df[['Question', 'Answer']] = support_data_df['conversation'].apply(extract_conversation)
|
36 |
+
|
37 |
+
# Combine FAQ data with support data
|
38 |
+
combined_data = pd.concat([faq_data, support_data_df[['Question', 'Answer']]], ignore_index=True)
|
39 |
+
|
40 |
+
# Initialize SBERT Model
|
41 |
+
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
42 |
+
|
43 |
+
# Generate and Index Embeddings for Combined Data
|
44 |
+
questions = combined_data['Question'].tolist()
|
45 |
+
embeddings = model.encode(questions, convert_to_tensor=True)
|
46 |
+
|
47 |
+
# Create FAISS index
|
48 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
49 |
+
index.add(embeddings.cpu().numpy())
|
50 |
+
|
51 |
+
# Load your fine-tuned DialoGPT model and tokenizer
|
52 |
+
tokenizer_gpt = AutoTokenizer.from_pretrained("Mishal23/fine_tuned_dialoGPT_model") # Update with your fine-tuned model path
|
53 |
+
model_gpt = AutoModelForCausalLM.from_pretrained("Mishal23/fine_tuned_dialoGPT_model") # Update with your fine-tuned model path
|
54 |
+
|
55 |
+
# Define Retrieval Function
|
56 |
+
def retrieve_answer(question):
|
57 |
+
question_embedding = model.encode([question], convert_to_tensor=True)
|
58 |
+
question_embedding_np = question_embedding.cpu().numpy()
|
59 |
+
_, closest_index = index.search(question_embedding_np, k=1)
|
60 |
+
best_match_idx = closest_index[0][0]
|
61 |
+
answer = combined_data.iloc[best_match_idx]['Answer']
|
62 |
+
|
63 |
+
# If the answer is empty, generate a fallback response
|
64 |
+
if answer.strip() == "":
|
65 |
+
return generate_response(question) # Generate a response from DialoGPT
|
66 |
+
|
67 |
+
return answer
|
68 |
+
|
69 |
+
# Generate response using your fine-tuned DialoGPT model
|
70 |
+
def generate_response(user_input):
|
71 |
+
input_ids = tokenizer_gpt.encode(user_input, return_tensors='pt')
|
72 |
+
chat_history_ids = model_gpt.generate(input_ids, max_length=100, pad_token_id=tokenizer_gpt.eos_token_id)
|
73 |
+
response = tokenizer_gpt.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
74 |
+
return response if response.strip() else "Oops, I don't know the answer to that."
|
75 |
+
|
76 |
+
# Initialize FastAPI app
|
77 |
+
app = FastAPI()
|
78 |
+
|
79 |
+
# Add CORS middleware
|
80 |
+
app.add_middleware(
|
81 |
+
CORSMiddleware,
|
82 |
+
allow_origins=["*"], # Allows all origins
|
83 |
+
allow_credentials=True,
|
84 |
+
allow_methods=["*"],
|
85 |
+
allow_headers=["*"],
|
86 |
+
)
|
87 |
+
|
88 |
+
# Define FastAPI route for Gradio interface
|
89 |
+
@app.get("/")
|
90 |
+
async def read_root():
|
91 |
+
return HTMLResponse("""<html>
|
92 |
+
<head>
|
93 |
+
<title>E-commerce Support Chatbot</title>
|
94 |
+
</head>
|
95 |
+
<body>
|
96 |
+
<h1>Welcome to the E-commerce Support Chatbot</h1>
|
97 |
+
<p>Use the Gradio interface to chat with the bot!</p>
|
98 |
+
</body>
|
99 |
+
</html>""")
|
100 |
+
|
101 |
+
# Gradio Chat Interface for E-commerce Support Chatbot
|
102 |
+
def chatbot_interface(user_input, chat_history=[]):
|
103 |
+
# Retrieve response from the knowledge base or generate it
|
104 |
+
response = retrieve_answer(user_input)
|
105 |
+
chat_history.append(("User", user_input))
|
106 |
+
chat_history.append(("Bot", response))
|
107 |
+
|
108 |
+
# Format chat history for display
|
109 |
+
chat_display = []
|
110 |
+
for sender, message in chat_history:
|
111 |
+
if sender == "User":
|
112 |
+
chat_display.append(f"**You**: {message}")
|
113 |
+
else:
|
114 |
+
chat_display.append(f"**Bot**: {message}")
|
115 |
+
return "\n\n".join(chat_display), chat_history
|
116 |
+
|
117 |
+
# Set up Gradio Chat Interface with conversational format
|
118 |
+
iface = gr.Interface(
|
119 |
+
fn=chatbot_interface,
|
120 |
+
inputs=[
|
121 |
+
gr.Textbox(lines=2, placeholder="Type your question here..."),
|
122 |
+
gr.State([]) # State variable to maintain chat history
|
123 |
+
],
|
124 |
+
outputs=[
|
125 |
+
gr.Markdown(), # Display formatted chat history
|
126 |
+
gr.State() # Update state
|
127 |
+
],
|
128 |
+
title="E-commerce Support Chatbot",
|
129 |
+
description="Ask questions about order tracking, returns, account help, and more!",
|
130 |
+
)
|
131 |
+
|
132 |
+
# Launch Gradio interface directly
|
133 |
+
iface.launch()
|