File size: 6,748 Bytes
8744085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from src.configs import Languages
from src.utils import (
    encode,
    wordifier,
    download_button,
    TextPreprocessor,
    plot_labels_prop,
    plot_nchars,
    plot_score,
    get_logo,
    read_file,
)
import streamlit as st


def write(session, uploaded_file):

    if uploaded_file:

        # 1. READ FILE
        with st.spinner("Reading file"):
            # TODO: write parser function that automatically understands format
            data = read_file(uploaded_file)

        # 2. CREATE UI TO SELECT COLUMNS
        st.markdown("")
        st.markdown("")
        st.header("Process")

        col1, col2, col3 = st.beta_columns(3)
        with col1:
            language = st.selectbox("Select language", [i.name for i in Languages])
            with st.beta_expander("Description"):
                st.markdown(
                    f"Select a language of text amongst those supported: {', '.join([f'`{i.name}`' for i in Languages])}"
                )
        with col2:
            cols_options = [""] + data.columns.tolist()
            label_column = st.selectbox("Select label column name", cols_options, index=0)
            with st.beta_expander("Description"):
                st.markdown("Select the column containing the label")

            if label_column:
                st.altair_chart(plot_labels_prop(data, label_column), use_container_width=True)

        with col3:
            text_column = st.selectbox("Select text column name", cols_options, index=0)
            with st.beta_expander("Description"):
                st.markdown("Select the column containing the text")

            if text_column:
                st.altair_chart(plot_nchars(data, text_column), use_container_width=True)

        with st.beta_expander("Advanced options"):
            # Lemmatization option
            col1, col2 = st.beta_columns([1, 3])
            with col1:
                lemmatization_when_elem = st.empty()
            with col2:
                st.markdown("Choose lemmatization option")

            # stopwords option
            col1, col2 = st.beta_columns([1, 3])
            with col1:
                remove_stopwords_elem = st.empty()
            with col2:
                st.markdown("Choose stopword option")

            # cleaning steps
            col1, col2 = st.beta_columns([1, 3])
            with col1:
                cleaning_steps_elem = st.empty()
                reset_button = st.empty()
            with col2:
                st.markdown("Choose cleaning steps")

            # implement reset logic
            if reset_button.button("Reset steps"):
                session.run_id += 1

            steps_options = list(TextPreprocessor._cleaning_options().keys())
            cleaning_steps = cleaning_steps_elem.multiselect(
                "Select text processing steps (ordered)",
                options=steps_options,
                default=steps_options,
                format_func=lambda x: x.replace("_", " ").title(),
                key=session.run_id,
            )
            lemmatization_options = list(TextPreprocessor._lemmatization_options().keys())
            lemmatization_when = lemmatization_when_elem.selectbox(
                "Select when lemmatization happens",
                options=lemmatization_options,
                index=0,
                key=session.run_id,
            )
            remove_stopwords = remove_stopwords_elem.checkbox("Remove stopwords", value=True, key=session.run_id)

        # Show sample checkbox
        col1, col2 = st.beta_columns([1, 2])
        with col1:
            show_sample = st.checkbox("Show sample of preprocessed text")

        # initialize text preprocessor
        preprocessor = TextPreprocessor(
            language=language,
            cleaning_steps=cleaning_steps,
            lemmatizer_when=lemmatization_when,
            remove_stop=remove_stopwords,
        )

        # 3. PROVIDE FEEDBACK ON OPTIONS
        if show_sample and not (label_column and text_column):
            st.warning("Please select `label` and `text` columns")

        elif show_sample and (label_column and text_column):
            sample_data = data.sample(10)
            sample_data[f"preprocessed_{text_column}"] = preprocessor.fit_transform(sample_data[text_column]).values
            st.table(sample_data.loc[:, [label_column, text_column, f"preprocessed_{text_column}"]])

        # 4. RUN
        run_button = st.button("Wordify!")
        if run_button and not (label_column and text_column):
            st.warning("Please select `label` and `text` columns")

        elif run_button and (label_column and text_column) and not session.process:
            # data = data.head()
            data[f"preprocessed_{text_column}"] = preprocessor.fit_transform(data[text_column]).values

            inputs = encode(data[f"preprocessed_{text_column}"], data[label_column])
            session.posdf, session.negdf = wordifier(**inputs)
            st.success("Wordified!")

            # session.posdf, session.negdf = process(data, text_column, label_column)
            session.process = True

        # 5. RESULTS
        if session.process and (label_column and text_column):
            st.markdown("")
            st.markdown("")
            st.header("Results")

            # col1, col2, _ = st.beta_columns(3)
            col1, col2, col3 = st.beta_columns([2, 3, 3])

            with col1:
                label = st.selectbox("Select label", data[label_column].unique().tolist())
                # # with col2:
                # thres = st.slider(
                #     "Select threshold",
                #     min_value=0,
                #     max_value=100,
                #     step=1,
                #     format="%f",
                #     value=30,
                # )
                show_plots = st.checkbox("Show plots of top 100")

            with col2:
                st.subheader(f"Words __positively__ identifying label `{label}`")
                st.write(session.posdf[session.posdf[label_column] == label].sort_values("score", ascending=False))
                download_button(session.posdf, "positive_data")
                if show_plots:
                    st.altair_chart(plot_score(session.posdf, label_column, label), use_container_width=True)

            with col3:
                st.subheader(f"Words __negatively__ identifying label `{label}`")
                st.write(session.negdf[session.negdf[label_column] == label].sort_values("score", ascending=False))
                download_button(session.negdf, "negative_data")
                if show_plots:
                    st.altair_chart(plot_score(session.negdf, label_column, label), use_container_width=True)