Spaces:
Build error
Build error
File size: 9,274 Bytes
8744085 c700823 51cab9d 8744085 51cab9d a66b528 51cab9d a66b528 51cab9d a66b528 51cab9d a66b528 51cab9d 8744085 c700823 8744085 c700823 8744085 ab15c62 8744085 c700823 8744085 a66b528 51cab9d 8744085 c700823 8744085 ab15c62 8744085 c700823 8744085 c700823 8744085 c700823 8744085 c700823 8744085 c700823 8744085 c700823 8744085 c700823 8744085 c700823 8744085 c700823 8744085 c700823 8744085 c700823 8744085 c718eb8 8744085 c700823 8744085 51cab9d c700823 51cab9d 8744085 c700823 8744085 c700823 8744085 c718eb8 c700823 8744085 c700823 51cab9d c718eb8 ab15c62 8744085 c700823 8744085 a66b528 c700823 51cab9d a66b528 c718eb8 a66b528 8744085 c700823 8744085 ab15c62 8744085 51cab9d 8744085 51cab9d 8744085 51cab9d 8744085 51cab9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
from src.configs import Languages
from src.utils import read_file, download_button
from src.plotting import plot_labels_prop, plot_nchars, plot_score
from src.preprocessing import Lemmatizer, PreprocessingPipeline, encode
from src.wordifier import wordifier
import streamlit as st
def write(session, uploaded_file):
if not uploaded_file:
st.markdown(
"""
Hi, welcome to __Wordify__! :rocket:
Start by uploading a file - CSV, XLSX (avoid Strict Open XML Spreadsheet format [here](https://stackoverflow.com/questions/62800822/openpyxl-cannot-read-strict-open-xml-spreadsheet-format-userwarning-file-conta)),
or PARQUET are currently supported.
Once you have uploaded the file, __Wordify__ will show an interactive UI through which
you'll be able to interactively decide the text preprocessing steps, their order, and
proceed to Wordify your text.
If you're ready, let's jump in:
:point_left: upload a file via the upload widget in the sidebar!
NOTE: whenever you want to reset everything, simply refresh the page.
"""
)
elif uploaded_file:
# ==== 1. READ FILE ==== #
with st.spinner("Reading file"):
# TODO: write parser function that automatically understands format
data = read_file(uploaded_file)
# 2. CREATE UI TO SELECT COLUMNS
col1, col2, col3 = st.beta_columns(3)
with col1:
language = st.selectbox("Select language", [i.name for i in Languages])
with st.beta_expander("Description"):
st.markdown(
f"Select a language amongst those supported: {', '.join([f'`{i.name}`' for i in Languages])}. This will be used to lemmatize and remove stopwords."
)
with col2:
cols_options = [""] + data.columns.tolist()
label_column = st.selectbox(
"Select label column name", cols_options, index=0
)
with st.beta_expander("Description"):
st.markdown("Select the column containing the labels.")
if label_column:
plot = plot_labels_prop(data, label_column)
if plot:
st.altair_chart(plot, use_container_width=True)
with col3:
text_column = st.selectbox("Select text column name", cols_options, index=0)
with st.beta_expander("Description"):
st.markdown("Select the column containing the texts.")
if text_column:
st.altair_chart(
plot_nchars(data, text_column), use_container_width=True
)
# ==== 2.1 CREATE UI FOR ADVANCED OPTIONS ==== #
with st.beta_expander("Advanced options"):
steps_options = list(PreprocessingPipeline.pipeline_components().keys())
# stopwords option and
col1, col2 = st.beta_columns([1, 3])
with col1:
st.markdown("Remove stopwords (uses Spacy vocabulary)")
with col2:
remove_stopwords_elem = st.empty()
# lemmatization option
col1, col2 = st.beta_columns([1, 3])
with col1:
st.markdown("Lemmatizes text (uses Spacy)")
with col2:
lemmatization_elem = st.empty()
# pre-lemmatization cleaning steps and
# post-lemmatization cleaning steps
col1, col2 = st.beta_columns([1, 3])
with col1:
st.markdown(
f"""
Define a pipeline of cleaning steps that is applied before and/or after lemmatization.
The available cleaning steps are:\n
{", ".join([f"`{x.replace('_', ' ').title()}`" for x in steps_options])}
"""
)
with col2:
pre_steps_elem = st.empty()
post_steps_elem = st.empty()
reset_button = st.empty()
# implement reset logic
if reset_button.button("Reset steps"):
session.run_id += 1
pre_steps = pre_steps_elem.multiselect(
"Select pre-lemmatization preprocessing steps (ordered)",
options=steps_options,
default=steps_options,
format_func=lambda x: x.replace("_", " ").title(),
key=session.run_id,
)
post_steps = post_steps_elem.multiselect(
"Select post-lemmatization processing steps (ordered)",
options=steps_options,
default=steps_options[-4:],
format_func=lambda x: x.replace("_", " ").title(),
key=session.run_id,
)
remove_stopwords = remove_stopwords_elem.checkbox(
"Remove stopwords",
value=True,
key=session.run_id,
)
lemmatization = lemmatization_elem.checkbox(
"Lemmatize text",
value=True,
key=session.run_id,
)
# show sample checkbox
col1, col2 = st.beta_columns([1, 2])
with col1:
show_sample = st.checkbox("Show sample of preprocessed text")
# initialize text preprocessor
preprocessing_pipeline = PreprocessingPipeline(
pre_steps=pre_steps,
lemmatizer=Lemmatizer(
language=language,
remove_stop=remove_stopwords,
lemmatization=lemmatization,
),
post_steps=post_steps,
)
print(preprocessing_pipeline.pre_steps)
# ==== 3. PROVIDE FEEDBACK ON OPTIONS ==== #
if show_sample and not (label_column and text_column):
st.warning("Please select `label` and `text` columns")
elif show_sample and (label_column and text_column):
sample_data = data.sample(5)
sample_data[f"preprocessed_{text_column}"] = preprocessing_pipeline(
sample_data[text_column]
).values
print(sample_data)
st.table(
sample_data.loc[
:, [label_column, text_column, f"preprocessed_{text_column}"]
]
)
# ==== 4. RUN ==== #
run_button = st.button("Wordify!")
if run_button and not (label_column and text_column):
st.warning("Please select `label` and `text` columns")
elif run_button and (label_column and text_column) and not session.process:
with st.spinner("Process started"):
# data = data.head()
data[f"preprocessed_{text_column}"] = preprocessing_pipeline(
data[text_column]
).values
print(data.head())
inputs = encode(data[f"preprocessed_{text_column}"], data[label_column])
session.posdf, session.negdf = wordifier(**inputs)
st.success("Wordified!")
# session.posdf, session.negdf = process(data, text_column, label_column)
session.process = True
# ==== 5. RESULTS ==== #
if session.process and (label_column and text_column):
st.markdown("")
st.markdown("")
st.header("Results")
# col1, col2, _ = st.beta_columns(3)
col1, col2, col3 = st.beta_columns([2, 3, 3])
with col1:
label = st.selectbox(
"Select label", data[label_column].unique().tolist()
)
# # with col2:
# thres = st.slider(
# "Select threshold",
# min_value=0,
# max_value=100,
# step=1,
# format="%f",
# value=30,
# )
show_plots = st.checkbox("Show plots of top 100")
with col2:
st.subheader(f"Words __positively__ identifying label `{label}`")
st.write(
session.posdf[session.posdf[label_column] == label].sort_values(
"score", ascending=False
)
)
download_button(session.posdf, "positive_data")
if show_plots:
st.altair_chart(
plot_score(session.posdf, label_column, label),
use_container_width=True,
)
with col3:
st.subheader(f"Words __negatively__ identifying label `{label}`")
st.write(
session.negdf[session.negdf[label_column] == label].sort_values(
"score", ascending=False
)
)
download_button(session.negdf, "negative_data")
if show_plots:
st.altair_chart(
plot_score(session.negdf, label_column, label),
use_container_width=True,
)
|