File size: 9,274 Bytes
8744085
c700823
 
 
51cab9d
8744085
 
 
 
 
51cab9d
 
 
 
a66b528
51cab9d
 
a66b528
51cab9d
 
 
a66b528
51cab9d
a66b528
51cab9d
 
 
 
 
 
 
8744085
c700823
8744085
 
 
 
 
 
 
 
 
 
c700823
8744085
 
 
ab15c62
 
 
8744085
c700823
8744085
 
a66b528
51cab9d
 
8744085
 
 
 
c700823
8744085
 
ab15c62
 
 
8744085
c700823
8744085
c700823
 
 
 
8744085
 
c700823
8744085
c700823
8744085
c700823
8744085
 
c700823
8744085
c700823
8744085
c700823
 
8744085
 
c700823
 
 
 
 
 
 
8744085
c700823
 
 
8744085
 
 
 
 
c700823
 
8744085
c718eb8
8744085
 
 
c700823
 
 
 
 
8744085
 
51cab9d
c700823
 
 
 
 
 
 
 
51cab9d
8744085
c700823
8744085
 
 
 
 
c700823
 
 
 
 
 
 
 
8744085
 
c718eb8
 
c700823
8744085
 
 
 
c700823
 
51cab9d
 
c718eb8
 
ab15c62
 
 
 
 
8744085
c700823
8744085
 
 
 
 
 
a66b528
 
c700823
51cab9d
 
a66b528
c718eb8
 
a66b528
 
8744085
 
 
 
 
c700823
8744085
 
 
 
 
 
 
 
 
ab15c62
 
 
8744085
 
 
 
 
 
 
 
 
 
 
 
 
51cab9d
 
 
 
 
8744085
 
51cab9d
 
 
 
8744085
 
 
51cab9d
 
 
 
 
8744085
 
51cab9d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from src.configs import Languages
from src.utils import read_file, download_button
from src.plotting import plot_labels_prop, plot_nchars, plot_score
from src.preprocessing import Lemmatizer, PreprocessingPipeline, encode
from src.wordifier import wordifier
import streamlit as st


def write(session, uploaded_file):

    if not uploaded_file:
        st.markdown(
            """
            Hi, welcome to __Wordify__! :rocket:

            Start by uploading a file - CSV, XLSX (avoid Strict Open XML Spreadsheet format [here](https://stackoverflow.com/questions/62800822/openpyxl-cannot-read-strict-open-xml-spreadsheet-format-userwarning-file-conta)),
            or PARQUET are currently supported.

            Once you have uploaded the file, __Wordify__ will show an interactive UI through which
            you'll be able to interactively decide the text preprocessing steps, their order, and
            proceed to Wordify your text.

            If you're ready, let's jump in:

            :point_left: upload a file via the upload widget in the sidebar!

            NOTE: whenever you want to reset everything, simply refresh the page.
            """
        )

    elif uploaded_file:

        # ==== 1. READ FILE ==== #
        with st.spinner("Reading file"):
            # TODO: write parser function that automatically understands format
            data = read_file(uploaded_file)

        # 2. CREATE UI TO SELECT COLUMNS
        col1, col2, col3 = st.beta_columns(3)
        with col1:
            language = st.selectbox("Select language", [i.name for i in Languages])
            with st.beta_expander("Description"):
                st.markdown(
                    f"Select a language amongst those supported: {', '.join([f'`{i.name}`' for i in Languages])}. This will be used to lemmatize and remove stopwords."
                )
        with col2:
            cols_options = [""] + data.columns.tolist()
            label_column = st.selectbox(
                "Select label column name", cols_options, index=0
            )
            with st.beta_expander("Description"):
                st.markdown("Select the column containing the labels.")

            if label_column:
                plot = plot_labels_prop(data, label_column)
                if plot:
                    st.altair_chart(plot, use_container_width=True)

        with col3:
            text_column = st.selectbox("Select text column name", cols_options, index=0)
            with st.beta_expander("Description"):
                st.markdown("Select the column containing the texts.")

            if text_column:
                st.altair_chart(
                    plot_nchars(data, text_column), use_container_width=True
                )

        # ==== 2.1 CREATE UI FOR ADVANCED OPTIONS ==== #
        with st.beta_expander("Advanced options"):

            steps_options = list(PreprocessingPipeline.pipeline_components().keys())

            # stopwords option and
            col1, col2 = st.beta_columns([1, 3])
            with col1:
                st.markdown("Remove stopwords (uses Spacy vocabulary)")
            with col2:
                remove_stopwords_elem = st.empty()

            # lemmatization option
            col1, col2 = st.beta_columns([1, 3])
            with col1:
                st.markdown("Lemmatizes text (uses Spacy)")
            with col2:
                lemmatization_elem = st.empty()

            # pre-lemmatization cleaning steps and
            # post-lemmatization cleaning steps
            col1, col2 = st.beta_columns([1, 3])
            with col1:
                st.markdown(
                    f"""
                    Define a pipeline of cleaning steps that is applied before and/or after lemmatization.
                    The available cleaning steps are:\n
                    {", ".join([f"`{x.replace('_', ' ').title()}`" for x in steps_options])}
                    """
                )
            with col2:
                pre_steps_elem = st.empty()
                post_steps_elem = st.empty()
                reset_button = st.empty()

            # implement reset logic
            if reset_button.button("Reset steps"):
                session.run_id += 1

            pre_steps = pre_steps_elem.multiselect(
                "Select pre-lemmatization preprocessing steps (ordered)",
                options=steps_options,
                default=steps_options,
                format_func=lambda x: x.replace("_", " ").title(),
                key=session.run_id,
            )
            post_steps = post_steps_elem.multiselect(
                "Select post-lemmatization processing steps (ordered)",
                options=steps_options,
                default=steps_options[-4:],
                format_func=lambda x: x.replace("_", " ").title(),
                key=session.run_id,
            )
            remove_stopwords = remove_stopwords_elem.checkbox(
                "Remove stopwords",
                value=True,
                key=session.run_id,
            )
            lemmatization = lemmatization_elem.checkbox(
                "Lemmatize text",
                value=True,
                key=session.run_id,
            )

        # show sample checkbox
        col1, col2 = st.beta_columns([1, 2])
        with col1:
            show_sample = st.checkbox("Show sample of preprocessed text")

        # initialize text preprocessor
        preprocessing_pipeline = PreprocessingPipeline(
            pre_steps=pre_steps,
            lemmatizer=Lemmatizer(
                language=language,
                remove_stop=remove_stopwords,
                lemmatization=lemmatization,
            ),
            post_steps=post_steps,
        )

        print(preprocessing_pipeline.pre_steps)

        # ==== 3. PROVIDE FEEDBACK ON OPTIONS ==== #
        if show_sample and not (label_column and text_column):
            st.warning("Please select `label` and `text` columns")

        elif show_sample and (label_column and text_column):
            sample_data = data.sample(5)
            sample_data[f"preprocessed_{text_column}"] = preprocessing_pipeline(
                sample_data[text_column]
            ).values

            print(sample_data)
            st.table(
                sample_data.loc[
                    :, [label_column, text_column, f"preprocessed_{text_column}"]
                ]
            )

        # ==== 4. RUN ==== #
        run_button = st.button("Wordify!")
        if run_button and not (label_column and text_column):
            st.warning("Please select `label` and `text` columns")

        elif run_button and (label_column and text_column) and not session.process:

            with st.spinner("Process started"):
                # data = data.head()
                data[f"preprocessed_{text_column}"] = preprocessing_pipeline(
                    data[text_column]
                ).values

                print(data.head())

                inputs = encode(data[f"preprocessed_{text_column}"], data[label_column])
                session.posdf, session.negdf = wordifier(**inputs)
            st.success("Wordified!")

            # session.posdf, session.negdf = process(data, text_column, label_column)
            session.process = True

        # ==== 5. RESULTS ==== #
        if session.process and (label_column and text_column):
            st.markdown("")
            st.markdown("")
            st.header("Results")

            # col1, col2, _ = st.beta_columns(3)
            col1, col2, col3 = st.beta_columns([2, 3, 3])

            with col1:
                label = st.selectbox(
                    "Select label", data[label_column].unique().tolist()
                )
                # # with col2:
                # thres = st.slider(
                #     "Select threshold",
                #     min_value=0,
                #     max_value=100,
                #     step=1,
                #     format="%f",
                #     value=30,
                # )
                show_plots = st.checkbox("Show plots of top 100")

            with col2:
                st.subheader(f"Words __positively__ identifying label `{label}`")
                st.write(
                    session.posdf[session.posdf[label_column] == label].sort_values(
                        "score", ascending=False
                    )
                )
                download_button(session.posdf, "positive_data")
                if show_plots:
                    st.altair_chart(
                        plot_score(session.posdf, label_column, label),
                        use_container_width=True,
                    )

            with col3:
                st.subheader(f"Words __negatively__ identifying label `{label}`")
                st.write(
                    session.negdf[session.negdf[label_column] == label].sort_values(
                        "score", ascending=False
                    )
                )
                download_button(session.negdf, "negative_data")
                if show_plots:
                    st.altair_chart(
                        plot_score(session.negdf, label_column, label),
                        use_container_width=True,
                    )