Spaces:
Sleeping
Sleeping
File size: 1,326 Bytes
8f748ec cd86ae0 8f748ec cd86ae0 8f748ec cd86ae0 8f748ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
from huggingface_hub import hf_hub_download
import torch
from transformers import AutoModelForSequenceClassification as modelSC, AutoTokenizer as token
from fastapi import FastAPI
from pydantic import BaseModel
import os
app = FastAPI()
os.makedirs("/app/cache", exist_ok=True)
model_path = hf_hub_download(repo_id="MienOlle/sentiment_analysis_api",
filename="sentimentAnalysis.pth",
cache_dir="/app/cache"
)
modelToken = token.from_pretrained("mdhugol/indonesia-bert-sentiment-classification")
model = modelSC.from_pretrained("mdhugol/indonesia-bert-sentiment-classification", num_labels=3)
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
model.eval()
class TextInput(BaseModel):
text: str
def predict(input):
inputs = modelToken(input, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
ret = logits.argmax().item()
labels = ["positive", "neutral", "negative"]
return {labels[ret]}
@app.post("/predict")
def get_sentiment(data: TextInput):
return predict(data.text)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |