import streamlit as st import requests import pandas as pd import matplotlib.pyplot as plt import seaborn as sns API_URL = "https://7eba-34-127-95-74.ngrok-free.app/query" st.set_page_config( page_title="SQL Agent with Streamlit", page_icon=":bar_chart:", layout="wide" ) with st.sidebar: st.write("## About Me") st.write("**Mahmoud Hassanen**") st.write("**[LinkedIn Profile](https://www.linkedin.com/in/mahmoudhassanen99/)**") # Main content st.title("SQL Agent with Streamlit") st.header("Analyze Sales Data with Natural Language Queries") # Input for the question question = st.text_input("Enter your question:") if st.button("Generate SQL"): if question: # API to generate SQL response = requests.post(API_URL, json={"question": question}) if response.status_code == 200: data = response.json() generated_sql = data["sql_query"] st.session_state.generated_sql = generated_sql # Store the generated SQL in session state st.write("### Generated SQL Query:") st.code(generated_sql, language="sql") else: st.error(f"API Error: Status Code {response.status_code}") else: st.warning("Please enter a question.") # Allow the user to modify the SQL query if "generated_sql" in st.session_state: modified_sql = st.text_area("Modify the SQL query (if needed):", st.session_state.generated_sql, height=200) if st.button("Execute Modified Query"): try: # Execute the modified SQL query response = requests.post(API_URL, json={"sql_query": modified_sql}) # Send the modified SQL to the API if response.status_code == 200: data = response.json() result_df = pd.read_json(data["result"], orient='records') st.write("### Query Results:") st.dataframe(result_df) # Visualize the data (if applicable) if 'region' in result_df.columns and 'total_sales' in result_df.columns: st.write("### Total Sales by Region") fig, ax = plt.subplots() sns.barplot(x='region', y='total_sales', data=result_df, ax=ax) st.pyplot(fig) else: st.error(f"Error executing SQL: {response.json().get('error')}") except Exception as e: st.error(f"Error executing SQL: {e}")