File size: 2,486 Bytes
f8497b9
 
 
 
 
 
1c9c9dd
16a4075
 
 
1c9c9dd
f8497b9
cb437b6
 
16a4075
 
 
 
 
cb437b6
16a4075
cb437b6
f8497b9
 
cb437b6
f8497b9
 
 
 
 
cb437b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8497b9
cb437b6
 
 
f8497b9
cb437b6
f8497b9
cb437b6
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import streamlit as st
import requests
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

st.set_page_config(
    page_title="SQL Agent with Streamlit", 
    page_icon=":bar_chart:",  
    layout="wide" 
)

with st.sidebar:
    st.write("## About Me")
    st.write("**Mahmoud Hassanen**") 
    st.write("**[LinkedIn Profile](https://www.linkedin.com/in/mahmoudhassanen99//)**")
    
st.title("SQL Agent with Streamlit")
st.header("Analyze Sales Data with Natural Language Queries")

API_URL = "https://14d0-34-27-134-153.ngrok-free.app/query" 

question = st.text_input("Enter your question:")

if st.button("Generate SQL"):
    if question:
        response = requests.post(API_URL, json={"question": question})
        
        if response.status_code == 200:
            data = response.json()
            generated_sql = data["sql_query"]
            st.session_state.generated_sql = generated_sql  # Store the generated SQL in session state
            st.write("### Generated SQL Query:")
            st.code(generated_sql, language="sql")
        else:
            st.error(f"API Error: Status Code {response.status_code}")
    else:
        st.warning("Please enter a question.")

# Allow the user to modify the SQL query
if "generated_sql" in st.session_state:
    modified_sql = st.text_area("Modify the SQL query (if needed):", st.session_state.generated_sql, height=200)
    
    if st.button("Execute Modified Query"):
        try:
            # Execute the modified SQL query
            result = execute_sql(modified_sql)  # Use your existing execute_sql function
            st.write("### Query Results:")
            st.dataframe(result)
            
            # Visualize the data (if applicable)
            if 'region' in result.columns and 'total_sales' in result.columns:
                st.write("### Total Sales by Region")
                fig, ax = plt.subplots()
                sns.barplot(x='region', y='total_sales', data=result, ax=ax)
                st.pyplot(fig)
        except Exception as e:
            st.error(f"Error executing SQL: {e}")

# Function to execute SQL and return results
def execute_sql(sql_query):
    # Create a SQLAlchemy connection string
    connection_string = f"mssql+pyodbc://{username}:{password}@{server}/{database}?driver={driver.replace(' ', '+')}"
    engine = create_engine(connection_string)
    
    # Execute the query and fetch results
    df = pd.read_sql(sql_query, engine)
    return df