File size: 7,419 Bytes
056c529
01ff6b3
 
 
 
056c529
62f49fe
 
 
 
 
 
 
056c529
01ff6b3
 
 
 
 
2f716a3
01ff6b3
 
 
 
 
 
 
 
2f716a3
19a72ca
01ff6b3
19a72ca
01ff6b3
62f49fe
01ff6b3
 
 
 
 
 
 
 
 
 
 
 
 
c2e2361
056c529
c2e2361
 
01ff6b3
 
 
 
 
 
 
 
 
 
 
056c529
 
 
 
 
01ff6b3
 
 
 
 
 
62f49fe
01ff6b3
 
056c529
 
 
01ff6b3
 
056c529
 
c69ccab
056c529
01ff6b3
 
62f49fe
01ff6b3
 
056c529
 
 
 
 
71dc112
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import gradio as gr
from transformers import pipeline
from pydub import AudioSegment
import os
import speech_recognition as sr


html_seeker='''
<html> <head> <meta charset="utf-8" /> <title>Gentle</title> <style> html, body { margin: 0; padding: 0; min-width: 900px; } #header { position: fixed; top: 0; left: 0; height: 50px; min-width: 900px; line-height: 50px; width: 100%; background-color: #999; box-shadow: 0px 0px 5px 0px rgba(0,0,0,0.5); font-family: Helvetica, sans-serif; } #header, #header a { color: white; } .home { margin: 0; font-weight: bold; text-transform: lowercase; width: 100px; } h4.home { margin: 0; background: #666; padding-left: 25px; padding-right: 30px; margin-right: 20px; float: left; text-decoration: none; } .home:hover a { background: #555; } #audio { margin-top: 9px; width: 500px; display: inline-block; } #transcript { margin: 0 15px; margin-bottom: 5em; white-space: pre-wrap; line-height: 2em; max-width: 600px; color: #999; clear: both; margin-top: 75px; /*direction: rtl;*/ } .success { color: black; } .success:hover { text-decoration: underline; } .active { color: magenta; background-color: yellow; } #preloader { visibility: hidden; } </style> </head> <body> <div id="header"> <h4 class="home">Model name</h4>'''
html_seeker1='''</div> </div> <div id="transcript" dir="auto"></div> <script> var $a = document.getElementById("audio"); window.onkeydown = function(ev) { if(ev.keyCode == 32) { ev.preventDefault(); $a.pause(); } } var $trans = document.getElementById("transcript"); var wds = []; var cur_wd; function highlight_word() { var t = $a.currentTime; // XXX: O(N); use binary search var hits = wds.filter(function(x) { return (t - x['timestamp']['0']) > 0.01 && (x['timestamp']['1'] - t) > 0.01; }, wds); var next_wd = hits[hits.length - 1]; if(cur_wd != next_wd) { var active = document.querySelectorAll('.active'); for(var i = 0; i < active.length; i++) { active[i].classList.remove('active'); } if(next_wd && next_wd.$div) { next_wd.$div.classList.add('active'); //render_phones(next_wd); } } cur_wd = next_wd; //highlight_phone(t); window.requestAnimationFrame(highlight_word); } window.requestAnimationFrame(highlight_word); $trans.innerHTML = "Loading..."; function render(ret) { wds = ret['chunks'] || []; transcript = ret['text']; $trans.innerHTML = ''; var currentOffset = 0; wds.forEach(function(wd) { var $wd = document.createElement('span'); var txt = wd['text']; var $wdText = document.createTextNode(txt); $wd.appendChild($wdText); wd.$div = $wd; $wd.className = 'success'; $wd.onclick = function() { console.log(wd['timestamp']['0']); $a.currentTime = wd['timestamp']['0']; $a.play(); }; $trans.appendChild($wd); $trans.appendChild(document.createTextNode(' ')); }); } function update() { if(INLINE_JSON) { // We want this to work from file:/// domains, so we provide a // mechanism for inlining the alignment data. render(INLINE_JSON); } } var INLINE_JSON='''
html_seeker2=''';update();
</script>'''

model_name = "voidful/wav2vec2-xlsr-multilingual-56"
model0 = pipeline(task="automatic-speech-recognition",
                 model=model_name)


model_name = "SLPL/Sharif-wav2vec2"
model2 = pipeline(task="automatic-speech-recognition",
                 model=model_name)
model_name = "ghofrani/common8"
model1 = pipeline(task="automatic-speech-recognition",
                 model=model_name)

import json
def predict_fa(speech,model):
    if model== "SLPL/Sharif-wav2vec2":
        text = model2(speech,return_timestamps="word" )
    elif model== "ghofrani/common8":
        text = model1(speech,return_timestamps="word" )
    elif model== "voidful/wav2vec2-xlsr-multilingual-56":
        text = model0(speech,return_timestamps="word" )
    return [text['text'],json.dumps(text),html_seeker+speech+html_seeker1+json.dumps(text)+html_seeker2]


def convert_to_wav(filename):
    filenameObj=os.path.splitext(filename)
    audio = AudioSegment.from_file(filename,format=filenameObj[1].replace(".",""))
    new_filename = filenameObj[0] + ".wav"
    while os.path.exists(new_filename):
        new_filename = os.path.splitext(new_filename)[0]+"(1)"+ ".wav"
    audio.export(new_filename, format="wav")
    print(f"Converting {filename} to {new_filename}...")
    return new_filename
def g_rec(audio_File ,language):
    r = sr.Recognizer()
    print(audio_File)
    
    #if not os.path.splitext(audio_File)[1]==".wav":
    #    audio_File=convert_to_wav(audio_File)
    hellow=sr.AudioFile(audio_File)
    with hellow as source:
        audio = r.record(source)
    try:
        s = r.recognize_google(audio,language =language)
        res= "Text: "+s
    except Exception as e:
        res= "Exception: "+str(e)
    return res
  # Export file as .wav
  
#predict(load_file_to_data('audio file path',sampling_rate=16_000)) # beware of the audio file sampling rate

#predict_lang_specific(load_file_to_data('audio file path',sampling_rate=16_000),'en') # beware of the audio file sampling rate
with gr.Blocks() as demo:
    gr.Markdown("multilingual Speech Recognition")

    with gr.Tab("Persian models"):
        inputs_speech_fa =gr.Audio(source="upload", type="filepath", optional=True,label="Upload your audio:")
        inputs_model_fa =gr.inputs.Radio(label="Language", choices=["ghofrani/common8","SLPL/Sharif-wav2vec2","voidful/wav2vec2-xlsr-multilingual-56"])
        output_transcribe1_fa = gr.Textbox(label="Transcribed text:")
        output_transcribe1_fa1 = gr.Textbox(label="Transcribed text with timestamps:")
        output_transcribe1_fa2 =gradio.HTML("")
        transcribe_audio1_fa= gr.Button("Submit")
    with gr.Tab("google"):
        gr.Markdown("set your speech language")
        inputs_speech1 =[ 
            gr.Audio(source="upload", type="filepath"),
            gr.Dropdown(choices=["af-ZA","am-ET","ar-AE","ar-BH","ar-DZ","ar-EG","ar-IL","ar-IQ","ar-JO","ar-KW","ar-LB","ar-MA","ar-MR","ar-OM","ar-PS","ar-QA","ar-SA","ar-TN","ar-YE","az-AZ","bg-BG","bn-BD","bn-IN","bs-BA","ca-ES","cs-CZ","da-DK","de-AT","de-CH","de-DE","el-GR","en-AU","en-CA","en-GB","en-GH","en-HK","en-IE","en-IN","en-KE","en-NG","en-NZ","en-PH","en-PK","en-SG","en-TZ","en-US","en-ZA","es-AR","es-BO","es-CL","es-CO","es-CR","es-DO","es-EC","es-ES","es-GT","es-HN","es-MX","es-NI","es-PA","es-PE","es-PR","es-PY","es-SV","es-US","es-UY","es-VE","et-EE","eu-ES","fa-IR","fi-FI","fil-PH","fr-BE","fr-CA","fr-CH","fr-FR","gl-ES","gu-IN","hi-IN","hr-HR","hu-HU","hy-AM","id-ID","is-IS","it-CH","it-IT","iw-IL","ja-JP","jv-ID","ka-GE","kk-KZ","km-KH","kn-IN","ko-KR","lo-LA","lt-LT","lv-LV","mk-MK","ml-IN","mn-MN","mr-IN","ms-MY","my-MM","ne-NP","nl-BE","nl-NL","no-NO","pa-Guru-IN","pl-PL","pt-BR","pt-PT","ro-RO","ru-RU","si-LK","sk-SK","sl-SI","sq-AL","sr-RS","su-ID","sv-SE","sw-KE","sw-TZ","ta-IN","ta-LK","ta-MY","ta-SG","te-IN","th-TH","tr-TR","uk-UA","ur-IN","ur-PK","uz-UZ","vi-VN","yue-Hant-HK","zh (cmn-Hans-CN)","zh-TW (cmn-Hant-TW)","zu-ZA"]
,value="fa-IR",label="language code")
        ]
        output_transcribe1 = gr.Textbox(label="output")
        transcribe_audio1_go= gr.Button("Submit")
    
    transcribe_audio1_fa.click(fn=predict_fa,
    inputs=[inputs_speech_fa ,inputs_model_fa ],
    outputs=[output_transcribe1_fa ,output_transcribe1_fa1,output_transcribe1_fa2 ] )
    
    transcribe_audio1_go.click(fn=g_rec,
    inputs=inputs_speech1 ,
    outputs=output_transcribe1 )


if __name__ == "__main__":
    demo.launch()