BryanW commited on
Commit
d8a901d
·
verified ·
1 Parent(s): e90c9cd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -12,16 +12,18 @@ import numpy as np
12
  import spaces
13
 
14
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
 
15
 
16
  def load_models(model_path="MeissonFlow/Meissonic",
17
  transformer_path="MeissonFlow/Muddit"):
18
  model = SymmetricTransformer2DModel.from_pretrained(
19
  transformer_path,
20
  subfolder="1024/transformer",
 
21
  )
22
- vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae")
23
- text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder")
24
- tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer")
25
  scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler")
26
 
27
  pipe = UnifiedPipeline(
@@ -65,7 +67,7 @@ def image_to_text(image, prompt, resolution=1024, steps=64, cfg=9.0):
65
  width=resolution,
66
  guidance_scale=cfg,
67
  num_inference_steps=steps,
68
- mask_token_embedding="MeissonFlow/Muddit/1024",
69
  generator=torch.manual_seed(42),
70
  )
71
 
@@ -87,7 +89,7 @@ def text_to_image(prompt, negative_prompt, num_images=1, resolution=1024, steps=
87
  width=resolution,
88
  guidance_scale=cfg,
89
  num_inference_steps=steps,
90
- mask_token_embedding="MeissonFlow/Muddit/1024",
91
  generator=torch.manual_seed(42),
92
  )
93
 
 
12
  import spaces
13
 
14
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
15
+ dtype = torch.bfloat16
16
 
17
  def load_models(model_path="MeissonFlow/Meissonic",
18
  transformer_path="MeissonFlow/Muddit"):
19
  model = SymmetricTransformer2DModel.from_pretrained(
20
  transformer_path,
21
  subfolder="1024/transformer",
22
+ torch_dtype=dtype)
23
  )
24
+ vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae",torch_dtype=dtype)
25
+ text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder",torch_dtype=dtype)
26
+ tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer",torch_dtype=dtype)
27
  scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler")
28
 
29
  pipe = UnifiedPipeline(
 
67
  width=resolution,
68
  guidance_scale=cfg,
69
  num_inference_steps=steps,
70
+ mask_token_embedding="./mask_token_embedding.pth",
71
  generator=torch.manual_seed(42),
72
  )
73
 
 
89
  width=resolution,
90
  guidance_scale=cfg,
91
  num_inference_steps=steps,
92
+ mask_token_embedding="./mask_token_embedding.pth",
93
  generator=torch.manual_seed(42),
94
  )
95