Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -49,7 +49,7 @@ def get_transform(resolution):
|
|
49 |
|
50 |
# Image-to-Text Function
|
51 |
@spaces.GPU
|
52 |
-
def image_to_text(image, prompt,
|
53 |
try:
|
54 |
transform = get_transform(resolution)
|
55 |
|
@@ -69,7 +69,7 @@ def image_to_text(image, prompt, resolution=1024, steps=64, cfg=9.0):
|
|
69 |
guidance_scale=cfg,
|
70 |
num_inference_steps=steps,
|
71 |
mask_token_embedding="./mask_token_embedding.pth",
|
72 |
-
generator=torch.manual_seed(
|
73 |
)
|
74 |
|
75 |
return output.prompts[0]
|
@@ -79,7 +79,7 @@ def image_to_text(image, prompt, resolution=1024, steps=64, cfg=9.0):
|
|
79 |
|
80 |
# Text-to-Image Function
|
81 |
@spaces.GPU
|
82 |
-
def text_to_image(prompt, negative_prompt, num_images=1,
|
83 |
try:
|
84 |
negative_prompt = negative_prompt or "worst quality, low quality, low res, blurry, distortion, watermark, logo, signature, text, jpeg artifacts, signature, sketch, duplicate, ugly, identifying mark"
|
85 |
|
@@ -91,7 +91,7 @@ def text_to_image(prompt, negative_prompt, num_images=1, resolution=1024, steps=
|
|
91 |
guidance_scale=cfg,
|
92 |
num_inference_steps=steps,
|
93 |
mask_token_embedding="./mask_token_embedding.pth",
|
94 |
-
generator=torch.manual_seed(
|
95 |
)
|
96 |
|
97 |
return output.images
|
@@ -112,7 +112,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Muddit Unifined Model") as demo:
|
|
112 |
i2t_prompt_input = gr.Textbox(label="Prompt", value="Please describe this image.", placeholder="Enter your prompt here...")
|
113 |
|
114 |
with gr.Accordion("Advanced Settings", open=False):
|
115 |
-
|
116 |
i2t_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=64, step=1)
|
117 |
i2t_cfg = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, value=9.0, step=0.5)
|
118 |
|
@@ -141,7 +141,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Muddit Unifined Model") as demo:
|
|
141 |
vqa_prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your question here...")
|
142 |
|
143 |
with gr.Accordion("Advanced Settings", open=False):
|
144 |
-
|
145 |
vqa_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=64, step=1)
|
146 |
vqa_cfg = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, value=9.0, step=0.5)
|
147 |
|
@@ -174,7 +174,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Muddit Unifined Model") as demo:
|
|
174 |
t2i_num_images = gr.Slider(label="Number of Images", minimum=1, maximum=4, value=1, step=1)
|
175 |
|
176 |
with gr.Accordion("Advanced Settings", open=False):
|
177 |
-
|
178 |
t2i_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=64, step=1)
|
179 |
t2i_cfg = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, value=9.0, step=0.5)
|
180 |
|
@@ -199,19 +199,19 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Muddit Unifined Model") as demo:
|
|
199 |
# Event handlers
|
200 |
i2t_submit_btn.click(
|
201 |
fn=image_to_text,
|
202 |
-
inputs=[i2t_image_input, i2t_prompt_input,
|
203 |
outputs=i2t_output_text
|
204 |
)
|
205 |
|
206 |
vqa_submit_btn.click(
|
207 |
fn=image_to_text,
|
208 |
-
inputs=[vqa_image_input, vqa_prompt_input,
|
209 |
outputs=vqa_output_text
|
210 |
)
|
211 |
|
212 |
t2i_submit_btn.click(
|
213 |
fn=text_to_image,
|
214 |
-
inputs=[t2i_prompt_input, t2i_negative_prompt, t2i_num_images,
|
215 |
outputs=t2i_gallery
|
216 |
)
|
217 |
|
|
|
49 |
|
50 |
# Image-to-Text Function
|
51 |
@spaces.GPU
|
52 |
+
def image_to_text(image, prompt, seed=42, steps=64, cfg=9.0):
|
53 |
try:
|
54 |
transform = get_transform(resolution)
|
55 |
|
|
|
69 |
guidance_scale=cfg,
|
70 |
num_inference_steps=steps,
|
71 |
mask_token_embedding="./mask_token_embedding.pth",
|
72 |
+
generator=torch.manual_seed(seed),
|
73 |
)
|
74 |
|
75 |
return output.prompts[0]
|
|
|
79 |
|
80 |
# Text-to-Image Function
|
81 |
@spaces.GPU
|
82 |
+
def text_to_image(prompt, negative_prompt, num_images=1, seed=42, steps=64, cfg=9.0):
|
83 |
try:
|
84 |
negative_prompt = negative_prompt or "worst quality, low quality, low res, blurry, distortion, watermark, logo, signature, text, jpeg artifacts, signature, sketch, duplicate, ugly, identifying mark"
|
85 |
|
|
|
91 |
guidance_scale=cfg,
|
92 |
num_inference_steps=steps,
|
93 |
mask_token_embedding="./mask_token_embedding.pth",
|
94 |
+
generator=torch.manual_seed(seed),
|
95 |
)
|
96 |
|
97 |
return output.images
|
|
|
112 |
i2t_prompt_input = gr.Textbox(label="Prompt", value="Please describe this image.", placeholder="Enter your prompt here...")
|
113 |
|
114 |
with gr.Accordion("Advanced Settings", open=False):
|
115 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32 - 1, step=1, value=42)
|
116 |
i2t_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=64, step=1)
|
117 |
i2t_cfg = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, value=9.0, step=0.5)
|
118 |
|
|
|
141 |
vqa_prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your question here...")
|
142 |
|
143 |
with gr.Accordion("Advanced Settings", open=False):
|
144 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32 - 1, step=1, value=42)
|
145 |
vqa_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=64, step=1)
|
146 |
vqa_cfg = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, value=9.0, step=0.5)
|
147 |
|
|
|
174 |
t2i_num_images = gr.Slider(label="Number of Images", minimum=1, maximum=4, value=1, step=1)
|
175 |
|
176 |
with gr.Accordion("Advanced Settings", open=False):
|
177 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32 - 1, step=1, value=42)
|
178 |
t2i_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=64, step=1)
|
179 |
t2i_cfg = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, value=9.0, step=0.5)
|
180 |
|
|
|
199 |
# Event handlers
|
200 |
i2t_submit_btn.click(
|
201 |
fn=image_to_text,
|
202 |
+
inputs=[i2t_image_input, i2t_prompt_input, seed, i2t_steps, i2t_cfg],
|
203 |
outputs=i2t_output_text
|
204 |
)
|
205 |
|
206 |
vqa_submit_btn.click(
|
207 |
fn=image_to_text,
|
208 |
+
inputs=[vqa_image_input, vqa_prompt_input, seed, vqa_steps, vqa_cfg],
|
209 |
outputs=vqa_output_text
|
210 |
)
|
211 |
|
212 |
t2i_submit_btn.click(
|
213 |
fn=text_to_image,
|
214 |
+
inputs=[t2i_prompt_input, t2i_negative_prompt, t2i_num_images, seed, t2i_steps, t2i_cfg],
|
215 |
outputs=t2i_gallery
|
216 |
)
|
217 |
|