File size: 32,324 Bytes
7217432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from dataclasses import dataclass

from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import PIL.Image
import torch
import PIL
import numpy as np

from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5Tokenizer, T5EncoderModel
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model
from transformers.models.gemma.tokenization_gemma_fast import GemmaTokenizerFast

from diffusers.image_processor import VaeImageProcessor
from diffusers.models import VQModel
from diffusers.utils import replace_example_docstring
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.utils import BaseOutput

from src.scheduler import Scheduler
from src.transformer import SymmetricTransformer2DModel


EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> image = pipe(prompt).images[0]
        ```
"""


def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
    latent_image_ids = torch.zeros(height // 2, width // 2, 3)
    latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
    latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]

    latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape

    latent_image_ids = latent_image_ids.reshape(
        latent_image_id_height * latent_image_id_width, latent_image_id_channels
    )

    return latent_image_ids.to(device=device, dtype=dtype)

def dedup_consecutive_words(text: str) -> str:
    """
    >>> dedup_consecutive_words("hello hello world world world")
    'hello world'
    """
    words = text.split()
    if not words:
        return text

    out = [words[0]]
    for w in words[1:]:
        if w != out[-1]:
            out.append(w)
    return " ".join(out)

def keep_upto_last_period(text: str) -> str:
    """
    Return the substring up to (and including) the last period-mark.
    
    The function searches first for the Chinese full stop β€œγ€‚β€;
    if none is found, it falls back to the ASCII dot β€œ.”.
    
    Parameters
    ----------
    text : str
        Input string.
    
    Returns
    -------
    str
        Substring ending at the final period-mark.  If no period is present,
        the original string is returned unchanged.
    """
    # Weired problem
    text = text.replace("such is such", "").replace("is such is", "").replace("such is", "").replace("is such", "")
    # Fallback to the ASCII period
    idx = -1
    if idx == -1:
        idx = text.rfind(".")
    # If still not found, return original text
    if idx == -1:
        return text
    # Keep everything up to (and including) the last period
    return text[:idx + 1]

@dataclass
class UnifiedPipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]
    prompts: List[str]


class UnifiedPipeline(DiffusionPipeline):
    image_processor: VaeImageProcessor
    vqvae: VQModel
    tokenizer: CLIPTokenizer
    tokenizer_2: T5Tokenizer
    text_encoder: CLIPTextModelWithProjection
    text_encoder_2: T5EncoderModel
    transformer: SymmetricTransformer2DModel
    scheduler: Scheduler
    model_cpu_offload_seq = "text_encoder->transformer->vqvae"

    def __init__(
        self,
        vqvae: VQModel,
        tokenizer: CLIPTokenizer,
        text_encoder: CLIPTextModelWithProjection,
        transformer: SymmetricTransformer2DModel,
        scheduler: Scheduler,
        tokenizer_2: T5Tokenizer = None,
        text_encoder_2: T5EncoderModel = None,
    ):
        super().__init__()

        self.register_modules(
            vqvae=vqvae,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            transformer=transformer,
            scheduler=scheduler,
        )
        self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Optional[Union[List[str], str]] = None,
        height: Optional[int] = 1024,
        width: Optional[int] = 1024,
        image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None,
        num_inference_steps: int = 48,
        guidance_scale: float = 9.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.IntTensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        negative_encoder_hidden_states: Optional[torch.Tensor] = None,
        output_type = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
        callback_steps: int = 1,
        micro_conditioning_aesthetic_score: int = 6,
        micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
        temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
        mask_token_embedding: Optional[str] = None,
    ):
        """
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.transformer.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 16):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 10.0):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.IntTensor`, *optional*):
                Pre-generated tokens representing latent vectors in `self.vqvae`, to be used as inputs for image
                gneration. If not provided, the starting latents will be completely masked.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument. A single vector from the
                pooled and projected final hidden states.
            encoder_hidden_states (`torch.Tensor`, *optional*):
                Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            negative_encoder_hidden_states (`torch.Tensor`, *optional*):
                Analogous to `encoder_hidden_states` for the positive prompt.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
                The targeted aesthetic score according to the laion aesthetic classifier. See
                https://laion.ai/blog/laion-aesthetics/ and the micro-conditioning section of
                https://arxiv.org/abs/2307.01952.
            micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
                The targeted height, width crop coordinates. See the micro-conditioning section of
                https://arxiv.org/abs/2307.01952.
            temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
                Configures the temperature scheduler on `self.scheduler` see `Scheduler#set_timesteps`.

        Examples:

        Returns:
            [`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
                `tuple` is returned where the first element is a list with the generated images.
        """
        if (prompt_embeds is not None and encoder_hidden_states is None) or (
            prompt_embeds is None and encoder_hidden_states is not None
        ):
            raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")

        if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
            negative_prompt_embeds is None and negative_encoder_hidden_states is not None
        ):
            raise ValueError(
                "pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither"
            )
        
        if self.text_encoder_2 is not None:
            self.text_encoder_2.to(self._execution_device)

        text2image = image is None
        image2text = image is not None

        if image2text:
            if self.text_encoder_2 is not None:
                prompt = "<extra_id_0>" * 256
                prompt = [prompt] * len(image)
                
                t5_mask_id = self.tokenizer_2.convert_tokens_to_ids("<extra_id_0>")
                self.scheduler.config.mask_token_id = t5_mask_id
            else:
                mask_token = "<mask>"
                self.tokenizer.add_tokens(mask_token, special_tokens=False)
                clip_mask_id = self.tokenizer.convert_tokens_to_ids(mask_token)
                self.text_encoder.resize_token_embeddings(len(self.tokenizer))
                
                if mask_token_embedding is not None:
                    if mask_token_embedding.endswith(".pth"):
                        mask_token_embedding = torch.load(mask_token_embedding)
                    else:
                        mask_token_embedding = os.path.dirname(mask_token_embedding)
                        mask_token_embedding_path = os.path.join(mask_token_embedding, "mask_token_embedding.pth")
                        assert os.path.exists(mask_token_embedding_path), f"{mask_token_embedding_path} doesn't exists!"
                        mask_token_embedding = torch.load(mask_token_embedding_path)
                        
                    mask_token_embedding = mask_token_embedding.to(self._execution_device, dtype=self.text_encoder.dtype)
                    self.text_encoder.get_input_embeddings().weight.data[clip_mask_id].copy_(mask_token_embedding)
                
                self.scheduler.config.mask_token_id = clip_mask_id
                
                input_ids = torch.ones(
                    size=(len(image), self.tokenizer.model_max_length),
                    dtype=torch.int64,
                    device=self._execution_device
                )
                input_ids = input_ids * clip_mask_id
                
                question_len = []
                if prompt is None:
                    question_len = [0] * len(image)
                elif isinstance(prompt, str):
                    question_ids = torch.LongTensor([self.tokenizer.encode(prompt)])
                    question_ids = question_ids.repeat(len(image), 1)
                    
                    q_len = len(question_ids[0]) - 1   # remove <eos> token
                    question_len = [q_len] * len(image)
                    
                    input_ids[:, :q_len] = question_ids[:, :-1]
                else: 
                    assert isinstance(prompt, list), f"prompt must be None or str or list!"
                    assert len(prompt) == len(image), f"VQA require equal num of images and prompts!"
                    for i, p in enumerate(prompt):
                        question_ids = torch.LongTensor([self.tokenizer.encode(p)])
                        
                        q_len = len(question_ids[0]) - 1
                        question_len.append(q_len)
                        
                        input_ids[i, :q_len] = question_ids[0, :-1]
        else:
            self.scheduler.config.mask_token_id = self.transformer.config.vocab_size - 1

        if isinstance(prompt, str):
            prompt = [prompt]

        if image is not None:
            batch_size = len(image)
        else:
            batch_size = len(prompt)

        if height is None:
            height = self.transformer.config.sample_size * self.vae_scale_factor

        if width is None:
            width = self.transformer.config.sample_size * self.vae_scale_factor

        if isinstance(self.text_encoder, CLIPTextModelWithProjection):
            text_encoder_type = "open_clip"
        if isinstance(self.text_encoder_2, Gemma2Model):
            text_encoder_type = "gemma"
        
        if prompt_embeds is None:
            if text_encoder_type == "t5_clip":
                if text2image:
                    input_ids_clip = self.tokenizer(
                        prompt,
                        return_tensors="pt",
                        padding="max_length",
                        truncation=True,
                        add_special_tokens=True,
                        max_length=77,
                    ).input_ids.to(self._execution_device)
                    outputs = self.text_encoder(input_ids_clip, return_dict=True, output_hidden_states=True)
                    prompt_embeds = outputs.text_embeds
                    
                    input_ids_t5 = self.tokenizer_2(
                        prompt,
                        return_tensors="pt",
                        padding="max_length",
                        truncation=True,
                        add_special_tokens=True,
                        max_length=256,
                    ).input_ids.to(self._execution_device)
                    
                outputs_2 = self.text_encoder_2(input_ids_t5, return_dict=True, output_hidden_states=True)
                encoder_hidden_states = outputs_2.last_hidden_state
            elif text_encoder_type == "open_clip":
                if text2image:
                    input_ids = self.tokenizer(
                        prompt,
                        return_tensors="pt",
                        padding="max_length",
                        truncation=True,
                        add_special_tokens=True,
                        max_length=77,
                    ).input_ids.to(self._execution_device)
                    
                outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
                prompt_embeds = outputs.text_embeds
                encoder_hidden_states = outputs.hidden_states[-2]
            elif text_encoder_type == "gemma":
                if text2image:
                    input_ids_clip = self.tokenizer(
                        prompt,
                        return_tensors="pt",
                        padding="max_length",
                        truncation=True,
                        add_special_tokens=True,
                        max_length=77,
                    ).input_ids.to(self._execution_device)
                    outputs = self.text_encoder(input_ids_clip, return_dict=True, output_hidden_states=True)
                    prompt_embeds = outputs.text_embeds
                    
                    input_ids_2 = self.tokenizer_2(
                        prompt,
                        truncation=True,
                        padding="max_length",
                        max_length=256,
                        return_tensors="pt",
                    ).input_ids.to(self._execution_device)
                    
                outputs_2 = self.text_encoder_2(input_ids_2, return_dict=True, output_hidden_states=True)
                encoder_hidden_states = outputs_2.last_hidden_state

        prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
        encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)

        if guidance_scale > 1.0 and text2image:
            if negative_prompt_embeds is None:
                if negative_prompt is None:
                    negative_prompt = [""] * len(prompt)

                if isinstance(negative_prompt, str):
                    negative_prompt = [negative_prompt] * len(prompt)

                if text_encoder_type == "t5_clip":                    
                    input_ids = self.tokenizer(
                        negative_prompt,
                        return_tensors="pt",
                        padding="max_length",
                        truncation=True,
                        add_special_tokens=True,
                        max_length=77,
                    ).input_ids.to(self._execution_device)
                    outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
                    negative_prompt_embeds = outputs.text_embeds
                    
                    input_ids_2 = self.tokenizer_2(
                        negative_prompt,
                        return_tensors="pt",
                        padding="max_length",
                        truncation=True,
                        add_special_tokens=True,
                        max_length=256,
                    ).input_ids.to(self._execution_device)
                    outputs_2 = self.text_encoder_2(input_ids_2, return_dict=True, output_hidden_states=True)
                    negative_encoder_hidden_states = outputs_2.last_hidden_state
                
                elif text_encoder_type == "open_clip":
                    input_ids = self.tokenizer(
                        negative_prompt,
                        return_tensors="pt",
                        padding="max_length",
                        truncation=True,
                        add_special_tokens=True,
                        max_length=77,
                    ).input_ids.to(self._execution_device)

                    outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
                
                    negative_prompt_embeds = outputs.text_embeds
                    negative_encoder_hidden_states = outputs.hidden_states[-2]
                
                elif text_encoder_type == "gemma":                    
                    input_ids = self.tokenizer(
                        negative_prompt,
                        return_tensors="pt",
                        padding="max_length",
                        truncation=True,
                        add_special_tokens=True,
                        max_length=77,
                    ).input_ids.to(self._execution_device)
                    outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
                    negative_prompt_embeds = outputs.text_embeds
                    
                    input_ids_2 = self.tokenizer_2(
                        negative_prompt,
                        truncation=True,
                        padding="max_length",
                        max_length=256,
                        return_tensors="pt",
                    ).input_ids.to(self._execution_device)
                    outputs_2 = self.text_encoder_2(input_ids_2, return_dict=True, output_hidden_states=True)
                    negative_encoder_hidden_states = outputs_2.last_hidden_state                 
                          
            negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
            negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)

            prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
            encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])

        # Note that the micro conditionings _do_ flip the order of width, height for the original size
        # and the crop coordinates. This is how it was done in the original code base
        micro_conds = torch.tensor(
            [
                width,
                height,
                micro_conditioning_crop_coord[0],
                micro_conditioning_crop_coord[1],
                micro_conditioning_aesthetic_score,
            ],
            device=self._execution_device,
            dtype=encoder_hidden_states.dtype,
        )
        micro_conds = micro_conds.unsqueeze(0)
        micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 and text2image else batch_size, -1)

        shape = (batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor)

        if latents is None and text2image:
            latents = torch.full(
                shape, self.scheduler.config.mask_token_id, dtype=torch.long, device=self._execution_device
            )
        elif image2text:
            if text_encoder_type in ("t5_clip", "gemma"):
                latents = input_ids_2 # [b, l]
            else:
                latents = input_ids

        model_input = None

        step_by_step = []

        self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
        num_warmup_steps = len(self.scheduler.timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, timestep in enumerate(self.scheduler.timesteps):
                if guidance_scale > 1.0 and text2image:
                    model_input = torch.cat([latents] * 2)
                    encoder_hidden_states = encoder_hidden_states
                elif image2text:
                    if model_input is None:
                        model_input = self.vqvae.quantize(
                            self.vqvae.encode(image.to(self._execution_device, dtype=self.vqvae.dtype)).latents
                        )[2][2].reshape(batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor)
                    
                    if text_encoder_type in ("t5_clip", "gemma"):
                        outputs_t5 = self.text_encoder_2(latents, return_dict=True)
                        encoder_hidden_states = outputs_t5.last_hidden_state
                        
                        batch_prompt = []
                        for i in range(latents.size(0)):
                            masked_prompt_input_id = latents[i].tolist()
                            prompt = self.tokenizer_2.decode(masked_prompt_input_id, skip_special_tokens=True)
                            batch_prompt.append(prompt)
                        
                        masked_prompt_input_ids_clip = self.tokenizer(
                            batch_prompt,
                            truncation=True,
                            padding="max_length",
                            max_length=77,
                            return_tensors="pt"
                        ).input_ids
                        masked_prompt_input_ids_clip = masked_prompt_input_ids_clip.to(self._execution_device)
                        outputs_clip = self.text_encoder(input_ids=masked_prompt_input_ids_clip, return_dict=True)
                        prompt_embeds = outputs_clip.text_embeds
                        
                    else:
                        outputs = self.text_encoder(latents, return_dict=True, output_hidden_states=True)
                        prompt_embeds = outputs.text_embeds
                        encoder_hidden_states = outputs.hidden_states[-2]
                else:
                    model_input = latents
                    encoder_hidden_states = encoder_hidden_states
                    
                if height == 1024: #args.resolution == 1024:
                    img_ids = _prepare_latent_image_ids(
                        model_input.shape[0], 
                        model_input.shape[-2],
                        model_input.shape[-1],
                        model_input.device,
                        model_input.dtype
                    )
                else:
                    img_ids = _prepare_latent_image_ids(
                        model_input.shape[0],
                        model_input.shape[-2],
                        model_input.shape[-1],
                        model_input.device,
                        model_input.dtype
                    )
                txt_ids = torch.zeros(encoder_hidden_states.shape[1], 3).to(
                    device=encoder_hidden_states.device,
                    dtype=encoder_hidden_states.dtype
                )
                
                # timestep_ = int(timestep / num_inference_steps * 1000)
                model_output, encoder_hidden_states_tmp = self.transformer(
                    hidden_states=model_input,
                    micro_conds=micro_conds,
                    pooled_projections=prompt_embeds,
                    encoder_hidden_states=encoder_hidden_states,
                    img_ids=img_ids,
                    txt_ids=txt_ids,
                    timestep=torch.tensor([timestep / num_inference_steps], device=model_input.device),
                )

                if image2text:
                    encoder_hidden_states = encoder_hidden_states_tmp.clone()

                if guidance_scale > 1.0 and text2image:
                    uncond_logits, cond_logits = model_output.chunk(2)
                    to_scheduler = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
                elif image2text:
                    to_scheduler = encoder_hidden_states
                else:
                    to_scheduler = model_output

                latents = self.scheduler.step(
                    model_output=to_scheduler,
                    timestep=timestep,
                    sample=latents,
                    generator=generator,
                ).prev_sample

                # this line will print the intermediate results of the image-to-text generation
                # step_by_step.append(self.tokenizer.decode(latents[0].tolist(), skip_special_tokens=True))
                
                # this line will print the intermediate results of the text-to-image generation
                # output = self.vqvae.decode(
                #     latents,
                #     force_not_quantize=True,
                #     shape=(
                #         batch_size,
                #         height // self.vae_scale_factor,
                #         width // self.vae_scale_factor,
                #         self.vqvae.config.latent_channels,
                #     ),
                # ).sample.clip(0, 1)
                # output = self.image_processor.postprocess(output, output_type)    # output is a list of PIL.Image, you need to save it.

                if i == len(self.scheduler.timesteps) - 1 or (
                    (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, timestep, latents)

        # with open("step_by_step.txt", "w") as file:
        #     for prompt in step_by_step:
        #         file.write(prompt + "\n")

        if guidance_scale > 1.0 and text2image:
            decoded_input_ids = encoder_hidden_states[encoder_hidden_states.shape[0] // 2:].argmax(-1)
        else:
            decoded_input_ids = encoder_hidden_states.argmax(-1)
            
        prompts = []
        for i, prompt in enumerate(decoded_input_ids):
            if image2text:
                q_len = question_len[i]
                prompt = self.tokenizer.decode(prompt.tolist()[q_len:], skip_special_tokens=True)        
                prompts.append(keep_upto_last_period(dedup_consecutive_words(prompt)))
            else:
                prompts.append("Placeholder")
            
        if output_type == "latent":
            output = latents
        else:
            needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast

            if needs_upcasting:
                self.vqvae.float()

            if text2image:
                to_vqvae = latents
            else:
                to_vqvae = model_input
                
            output = self.vqvae.decode(
                to_vqvae,
                force_not_quantize=True,
                shape=(
                    batch_size,
                    height // self.vae_scale_factor,
                    width // self.vae_scale_factor,
                    self.vqvae.config.latent_channels,
                ),
            ).sample.clip(0, 1)
            output = self.image_processor.postprocess(output, output_type)

            if needs_upcasting:
                self.vqvae.half()

        self.maybe_free_model_hooks()

        if not return_dict:
            return (output,)

        return UnifiedPipelineOutput(images=output, prompts=prompts)