Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,324 Bytes
7217432 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 |
# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import PIL.Image
import torch
import PIL
import numpy as np
from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5Tokenizer, T5EncoderModel
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model
from transformers.models.gemma.tokenization_gemma_fast import GemmaTokenizerFast
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import VQModel
from diffusers.utils import replace_example_docstring
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.utils import BaseOutput
from src.scheduler import Scheduler
from src.transformer import SymmetricTransformer2DModel
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> image = pipe(prompt).images[0]
```
"""
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.reshape(
latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)
def dedup_consecutive_words(text: str) -> str:
"""
>>> dedup_consecutive_words("hello hello world world world")
'hello world'
"""
words = text.split()
if not words:
return text
out = [words[0]]
for w in words[1:]:
if w != out[-1]:
out.append(w)
return " ".join(out)
def keep_upto_last_period(text: str) -> str:
"""
Return the substring up to (and including) the last period-mark.
The function searches first for the Chinese full stop βγβ;
if none is found, it falls back to the ASCII dot β.β.
Parameters
----------
text : str
Input string.
Returns
-------
str
Substring ending at the final period-mark. If no period is present,
the original string is returned unchanged.
"""
# Weired problem
text = text.replace("such is such", "").replace("is such is", "").replace("such is", "").replace("is such", "")
# Fallback to the ASCII period
idx = -1
if idx == -1:
idx = text.rfind(".")
# If still not found, return original text
if idx == -1:
return text
# Keep everything up to (and including) the last period
return text[:idx + 1]
@dataclass
class UnifiedPipelineOutput(BaseOutput):
"""
Output class for image pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
prompts: List[str]
class UnifiedPipeline(DiffusionPipeline):
image_processor: VaeImageProcessor
vqvae: VQModel
tokenizer: CLIPTokenizer
tokenizer_2: T5Tokenizer
text_encoder: CLIPTextModelWithProjection
text_encoder_2: T5EncoderModel
transformer: SymmetricTransformer2DModel
scheduler: Scheduler
model_cpu_offload_seq = "text_encoder->transformer->vqvae"
def __init__(
self,
vqvae: VQModel,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModelWithProjection,
transformer: SymmetricTransformer2DModel,
scheduler: Scheduler,
tokenizer_2: T5Tokenizer = None,
text_encoder_2: T5EncoderModel = None,
):
super().__init__()
self.register_modules(
vqvae=vqvae,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Optional[Union[List[str], str]] = None,
height: Optional[int] = 1024,
width: Optional[int] = 1024,
image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None,
num_inference_steps: int = 48,
guidance_scale: float = 9.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.IntTensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_encoder_hidden_states: Optional[torch.Tensor] = None,
output_type = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
callback_steps: int = 1,
micro_conditioning_aesthetic_score: int = 6,
micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
mask_token_embedding: Optional[str] = None,
):
"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
height (`int`, *optional*, defaults to `self.transformer.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 16):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 10.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.IntTensor`, *optional*):
Pre-generated tokens representing latent vectors in `self.vqvae`, to be used as inputs for image
gneration. If not provided, the starting latents will be completely masked.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument. A single vector from the
pooled and projected final hidden states.
encoder_hidden_states (`torch.Tensor`, *optional*):
Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
negative_encoder_hidden_states (`torch.Tensor`, *optional*):
Analogous to `encoder_hidden_states` for the positive prompt.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
The targeted aesthetic score according to the laion aesthetic classifier. See
https://laion.ai/blog/laion-aesthetics/ and the micro-conditioning section of
https://arxiv.org/abs/2307.01952.
micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
The targeted height, width crop coordinates. See the micro-conditioning section of
https://arxiv.org/abs/2307.01952.
temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
Configures the temperature scheduler on `self.scheduler` see `Scheduler#set_timesteps`.
Examples:
Returns:
[`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
`tuple` is returned where the first element is a list with the generated images.
"""
if (prompt_embeds is not None and encoder_hidden_states is None) or (
prompt_embeds is None and encoder_hidden_states is not None
):
raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")
if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
negative_prompt_embeds is None and negative_encoder_hidden_states is not None
):
raise ValueError(
"pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither"
)
if self.text_encoder_2 is not None:
self.text_encoder_2.to(self._execution_device)
text2image = image is None
image2text = image is not None
if image2text:
if self.text_encoder_2 is not None:
prompt = "<extra_id_0>" * 256
prompt = [prompt] * len(image)
t5_mask_id = self.tokenizer_2.convert_tokens_to_ids("<extra_id_0>")
self.scheduler.config.mask_token_id = t5_mask_id
else:
mask_token = "<mask>"
self.tokenizer.add_tokens(mask_token, special_tokens=False)
clip_mask_id = self.tokenizer.convert_tokens_to_ids(mask_token)
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
if mask_token_embedding is not None:
if mask_token_embedding.endswith(".pth"):
mask_token_embedding = torch.load(mask_token_embedding)
else:
mask_token_embedding = os.path.dirname(mask_token_embedding)
mask_token_embedding_path = os.path.join(mask_token_embedding, "mask_token_embedding.pth")
assert os.path.exists(mask_token_embedding_path), f"{mask_token_embedding_path} doesn't exists!"
mask_token_embedding = torch.load(mask_token_embedding_path)
mask_token_embedding = mask_token_embedding.to(self._execution_device, dtype=self.text_encoder.dtype)
self.text_encoder.get_input_embeddings().weight.data[clip_mask_id].copy_(mask_token_embedding)
self.scheduler.config.mask_token_id = clip_mask_id
input_ids = torch.ones(
size=(len(image), self.tokenizer.model_max_length),
dtype=torch.int64,
device=self._execution_device
)
input_ids = input_ids * clip_mask_id
question_len = []
if prompt is None:
question_len = [0] * len(image)
elif isinstance(prompt, str):
question_ids = torch.LongTensor([self.tokenizer.encode(prompt)])
question_ids = question_ids.repeat(len(image), 1)
q_len = len(question_ids[0]) - 1 # remove <eos> token
question_len = [q_len] * len(image)
input_ids[:, :q_len] = question_ids[:, :-1]
else:
assert isinstance(prompt, list), f"prompt must be None or str or list!"
assert len(prompt) == len(image), f"VQA require equal num of images and prompts!"
for i, p in enumerate(prompt):
question_ids = torch.LongTensor([self.tokenizer.encode(p)])
q_len = len(question_ids[0]) - 1
question_len.append(q_len)
input_ids[i, :q_len] = question_ids[0, :-1]
else:
self.scheduler.config.mask_token_id = self.transformer.config.vocab_size - 1
if isinstance(prompt, str):
prompt = [prompt]
if image is not None:
batch_size = len(image)
else:
batch_size = len(prompt)
if height is None:
height = self.transformer.config.sample_size * self.vae_scale_factor
if width is None:
width = self.transformer.config.sample_size * self.vae_scale_factor
if isinstance(self.text_encoder, CLIPTextModelWithProjection):
text_encoder_type = "open_clip"
if isinstance(self.text_encoder_2, Gemma2Model):
text_encoder_type = "gemma"
if prompt_embeds is None:
if text_encoder_type == "t5_clip":
if text2image:
input_ids_clip = self.tokenizer(
prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
add_special_tokens=True,
max_length=77,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids_clip, return_dict=True, output_hidden_states=True)
prompt_embeds = outputs.text_embeds
input_ids_t5 = self.tokenizer_2(
prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
add_special_tokens=True,
max_length=256,
).input_ids.to(self._execution_device)
outputs_2 = self.text_encoder_2(input_ids_t5, return_dict=True, output_hidden_states=True)
encoder_hidden_states = outputs_2.last_hidden_state
elif text_encoder_type == "open_clip":
if text2image:
input_ids = self.tokenizer(
prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
add_special_tokens=True,
max_length=77,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
prompt_embeds = outputs.text_embeds
encoder_hidden_states = outputs.hidden_states[-2]
elif text_encoder_type == "gemma":
if text2image:
input_ids_clip = self.tokenizer(
prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
add_special_tokens=True,
max_length=77,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids_clip, return_dict=True, output_hidden_states=True)
prompt_embeds = outputs.text_embeds
input_ids_2 = self.tokenizer_2(
prompt,
truncation=True,
padding="max_length",
max_length=256,
return_tensors="pt",
).input_ids.to(self._execution_device)
outputs_2 = self.text_encoder_2(input_ids_2, return_dict=True, output_hidden_states=True)
encoder_hidden_states = outputs_2.last_hidden_state
prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
if guidance_scale > 1.0 and text2image:
if negative_prompt_embeds is None:
if negative_prompt is None:
negative_prompt = [""] * len(prompt)
if isinstance(negative_prompt, str):
negative_prompt = [negative_prompt] * len(prompt)
if text_encoder_type == "t5_clip":
input_ids = self.tokenizer(
negative_prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
add_special_tokens=True,
max_length=77,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
negative_prompt_embeds = outputs.text_embeds
input_ids_2 = self.tokenizer_2(
negative_prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
add_special_tokens=True,
max_length=256,
).input_ids.to(self._execution_device)
outputs_2 = self.text_encoder_2(input_ids_2, return_dict=True, output_hidden_states=True)
negative_encoder_hidden_states = outputs_2.last_hidden_state
elif text_encoder_type == "open_clip":
input_ids = self.tokenizer(
negative_prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
add_special_tokens=True,
max_length=77,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
negative_prompt_embeds = outputs.text_embeds
negative_encoder_hidden_states = outputs.hidden_states[-2]
elif text_encoder_type == "gemma":
input_ids = self.tokenizer(
negative_prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
add_special_tokens=True,
max_length=77,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
negative_prompt_embeds = outputs.text_embeds
input_ids_2 = self.tokenizer_2(
negative_prompt,
truncation=True,
padding="max_length",
max_length=256,
return_tensors="pt",
).input_ids.to(self._execution_device)
outputs_2 = self.text_encoder_2(input_ids_2, return_dict=True, output_hidden_states=True)
negative_encoder_hidden_states = outputs_2.last_hidden_state
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])
# Note that the micro conditionings _do_ flip the order of width, height for the original size
# and the crop coordinates. This is how it was done in the original code base
micro_conds = torch.tensor(
[
width,
height,
micro_conditioning_crop_coord[0],
micro_conditioning_crop_coord[1],
micro_conditioning_aesthetic_score,
],
device=self._execution_device,
dtype=encoder_hidden_states.dtype,
)
micro_conds = micro_conds.unsqueeze(0)
micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 and text2image else batch_size, -1)
shape = (batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor)
if latents is None and text2image:
latents = torch.full(
shape, self.scheduler.config.mask_token_id, dtype=torch.long, device=self._execution_device
)
elif image2text:
if text_encoder_type in ("t5_clip", "gemma"):
latents = input_ids_2 # [b, l]
else:
latents = input_ids
model_input = None
step_by_step = []
self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
num_warmup_steps = len(self.scheduler.timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, timestep in enumerate(self.scheduler.timesteps):
if guidance_scale > 1.0 and text2image:
model_input = torch.cat([latents] * 2)
encoder_hidden_states = encoder_hidden_states
elif image2text:
if model_input is None:
model_input = self.vqvae.quantize(
self.vqvae.encode(image.to(self._execution_device, dtype=self.vqvae.dtype)).latents
)[2][2].reshape(batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor)
if text_encoder_type in ("t5_clip", "gemma"):
outputs_t5 = self.text_encoder_2(latents, return_dict=True)
encoder_hidden_states = outputs_t5.last_hidden_state
batch_prompt = []
for i in range(latents.size(0)):
masked_prompt_input_id = latents[i].tolist()
prompt = self.tokenizer_2.decode(masked_prompt_input_id, skip_special_tokens=True)
batch_prompt.append(prompt)
masked_prompt_input_ids_clip = self.tokenizer(
batch_prompt,
truncation=True,
padding="max_length",
max_length=77,
return_tensors="pt"
).input_ids
masked_prompt_input_ids_clip = masked_prompt_input_ids_clip.to(self._execution_device)
outputs_clip = self.text_encoder(input_ids=masked_prompt_input_ids_clip, return_dict=True)
prompt_embeds = outputs_clip.text_embeds
else:
outputs = self.text_encoder(latents, return_dict=True, output_hidden_states=True)
prompt_embeds = outputs.text_embeds
encoder_hidden_states = outputs.hidden_states[-2]
else:
model_input = latents
encoder_hidden_states = encoder_hidden_states
if height == 1024: #args.resolution == 1024:
img_ids = _prepare_latent_image_ids(
model_input.shape[0],
model_input.shape[-2],
model_input.shape[-1],
model_input.device,
model_input.dtype
)
else:
img_ids = _prepare_latent_image_ids(
model_input.shape[0],
model_input.shape[-2],
model_input.shape[-1],
model_input.device,
model_input.dtype
)
txt_ids = torch.zeros(encoder_hidden_states.shape[1], 3).to(
device=encoder_hidden_states.device,
dtype=encoder_hidden_states.dtype
)
# timestep_ = int(timestep / num_inference_steps * 1000)
model_output, encoder_hidden_states_tmp = self.transformer(
hidden_states=model_input,
micro_conds=micro_conds,
pooled_projections=prompt_embeds,
encoder_hidden_states=encoder_hidden_states,
img_ids=img_ids,
txt_ids=txt_ids,
timestep=torch.tensor([timestep / num_inference_steps], device=model_input.device),
)
if image2text:
encoder_hidden_states = encoder_hidden_states_tmp.clone()
if guidance_scale > 1.0 and text2image:
uncond_logits, cond_logits = model_output.chunk(2)
to_scheduler = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
elif image2text:
to_scheduler = encoder_hidden_states
else:
to_scheduler = model_output
latents = self.scheduler.step(
model_output=to_scheduler,
timestep=timestep,
sample=latents,
generator=generator,
).prev_sample
# this line will print the intermediate results of the image-to-text generation
# step_by_step.append(self.tokenizer.decode(latents[0].tolist(), skip_special_tokens=True))
# this line will print the intermediate results of the text-to-image generation
# output = self.vqvae.decode(
# latents,
# force_not_quantize=True,
# shape=(
# batch_size,
# height // self.vae_scale_factor,
# width // self.vae_scale_factor,
# self.vqvae.config.latent_channels,
# ),
# ).sample.clip(0, 1)
# output = self.image_processor.postprocess(output, output_type) # output is a list of PIL.Image, you need to save it.
if i == len(self.scheduler.timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, timestep, latents)
# with open("step_by_step.txt", "w") as file:
# for prompt in step_by_step:
# file.write(prompt + "\n")
if guidance_scale > 1.0 and text2image:
decoded_input_ids = encoder_hidden_states[encoder_hidden_states.shape[0] // 2:].argmax(-1)
else:
decoded_input_ids = encoder_hidden_states.argmax(-1)
prompts = []
for i, prompt in enumerate(decoded_input_ids):
if image2text:
q_len = question_len[i]
prompt = self.tokenizer.decode(prompt.tolist()[q_len:], skip_special_tokens=True)
prompts.append(keep_upto_last_period(dedup_consecutive_words(prompt)))
else:
prompts.append("Placeholder")
if output_type == "latent":
output = latents
else:
needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
if needs_upcasting:
self.vqvae.float()
if text2image:
to_vqvae = latents
else:
to_vqvae = model_input
output = self.vqvae.decode(
to_vqvae,
force_not_quantize=True,
shape=(
batch_size,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
self.vqvae.config.latent_channels,
),
).sample.clip(0, 1)
output = self.image_processor.postprocess(output, output_type)
if needs_upcasting:
self.vqvae.half()
self.maybe_free_model_hooks()
if not return_dict:
return (output,)
return UnifiedPipelineOutput(images=output, prompts=prompts) |