Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- src/frontend/cli_interactive.py +661 -0
- src/frontend/utils.py +88 -0
src/frontend/cli_interactive.py
ADDED
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os import path
|
2 |
+
from PIL import Image
|
3 |
+
from typing import Any
|
4 |
+
|
5 |
+
from constants import DEVICE
|
6 |
+
from paths import FastStableDiffusionPaths
|
7 |
+
from backend.upscale.upscaler import upscale_image
|
8 |
+
from backend.upscale.tiled_upscale import generate_upscaled_image
|
9 |
+
from frontend.webui.image_variations_ui import generate_image_variations
|
10 |
+
from backend.lora import (
|
11 |
+
get_active_lora_weights,
|
12 |
+
update_lora_weights,
|
13 |
+
load_lora_weight,
|
14 |
+
)
|
15 |
+
from backend.models.lcmdiffusion_setting import (
|
16 |
+
DiffusionTask,
|
17 |
+
ControlNetSetting,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
_batch_count = 1
|
22 |
+
_edit_lora_settings = False
|
23 |
+
|
24 |
+
|
25 |
+
def user_value(
|
26 |
+
value_type: type,
|
27 |
+
message: str,
|
28 |
+
default_value: Any,
|
29 |
+
) -> Any:
|
30 |
+
try:
|
31 |
+
value = value_type(input(message))
|
32 |
+
except:
|
33 |
+
value = default_value
|
34 |
+
return value
|
35 |
+
|
36 |
+
|
37 |
+
def interactive_mode(
|
38 |
+
config,
|
39 |
+
context,
|
40 |
+
):
|
41 |
+
print("=============================================")
|
42 |
+
print("Welcome to FastSD CPU Interactive CLI")
|
43 |
+
print("=============================================")
|
44 |
+
while True:
|
45 |
+
print("> 1. Text to Image")
|
46 |
+
print("> 2. Image to Image")
|
47 |
+
print("> 3. Image Variations")
|
48 |
+
print("> 4. EDSR Upscale")
|
49 |
+
print("> 5. SD Upscale")
|
50 |
+
print("> 6. Edit default generation settings")
|
51 |
+
print("> 7. Edit LoRA settings")
|
52 |
+
print("> 8. Edit ControlNet settings")
|
53 |
+
print("> 9. Edit negative prompt")
|
54 |
+
print("> 10. Quit")
|
55 |
+
option = user_value(
|
56 |
+
int,
|
57 |
+
"Enter a Diffusion Task number (1): ",
|
58 |
+
1,
|
59 |
+
)
|
60 |
+
if option not in range(1, 11):
|
61 |
+
print("Wrong Diffusion Task number!")
|
62 |
+
exit()
|
63 |
+
|
64 |
+
if option == 1:
|
65 |
+
interactive_txt2img(
|
66 |
+
config,
|
67 |
+
context,
|
68 |
+
)
|
69 |
+
elif option == 2:
|
70 |
+
interactive_img2img(
|
71 |
+
config,
|
72 |
+
context,
|
73 |
+
)
|
74 |
+
elif option == 3:
|
75 |
+
interactive_variations(
|
76 |
+
config,
|
77 |
+
context,
|
78 |
+
)
|
79 |
+
elif option == 4:
|
80 |
+
interactive_edsr(
|
81 |
+
config,
|
82 |
+
context,
|
83 |
+
)
|
84 |
+
elif option == 5:
|
85 |
+
interactive_sdupscale(
|
86 |
+
config,
|
87 |
+
context,
|
88 |
+
)
|
89 |
+
elif option == 6:
|
90 |
+
interactive_settings(
|
91 |
+
config,
|
92 |
+
context,
|
93 |
+
)
|
94 |
+
elif option == 7:
|
95 |
+
interactive_lora(
|
96 |
+
config,
|
97 |
+
context,
|
98 |
+
True,
|
99 |
+
)
|
100 |
+
elif option == 8:
|
101 |
+
interactive_controlnet(
|
102 |
+
config,
|
103 |
+
context,
|
104 |
+
True,
|
105 |
+
)
|
106 |
+
elif option == 9:
|
107 |
+
interactive_negative(
|
108 |
+
config,
|
109 |
+
context,
|
110 |
+
)
|
111 |
+
elif option == 10:
|
112 |
+
exit()
|
113 |
+
|
114 |
+
|
115 |
+
def interactive_negative(
|
116 |
+
config,
|
117 |
+
context,
|
118 |
+
):
|
119 |
+
settings = config.lcm_diffusion_setting
|
120 |
+
print(f"Current negative prompt: '{settings.negative_prompt}'")
|
121 |
+
user_input = input("Write a negative prompt (set guidance > 1.0): ")
|
122 |
+
if user_input == "":
|
123 |
+
return
|
124 |
+
else:
|
125 |
+
settings.negative_prompt = user_input
|
126 |
+
|
127 |
+
|
128 |
+
def interactive_controlnet(
|
129 |
+
config,
|
130 |
+
context,
|
131 |
+
menu_flag=False,
|
132 |
+
):
|
133 |
+
"""
|
134 |
+
@param menu_flag: Indicates whether this function was called from the main
|
135 |
+
interactive CLI menu; _True_ if called from the main menu, _False_ otherwise
|
136 |
+
"""
|
137 |
+
settings = config.lcm_diffusion_setting
|
138 |
+
if not settings.controlnet:
|
139 |
+
settings.controlnet = ControlNetSetting()
|
140 |
+
|
141 |
+
current_enabled = settings.controlnet.enabled
|
142 |
+
current_adapter_path = settings.controlnet.adapter_path
|
143 |
+
current_conditioning_scale = settings.controlnet.conditioning_scale
|
144 |
+
current_control_image = settings.controlnet._control_image
|
145 |
+
|
146 |
+
option = input("Enable ControlNet? (y/N): ")
|
147 |
+
settings.controlnet.enabled = True if option.upper() == "Y" else False
|
148 |
+
if settings.controlnet.enabled:
|
149 |
+
option = input(
|
150 |
+
f"Enter ControlNet adapter path ({settings.controlnet.adapter_path}): "
|
151 |
+
)
|
152 |
+
if option != "":
|
153 |
+
settings.controlnet.adapter_path = option
|
154 |
+
settings.controlnet.conditioning_scale = user_value(
|
155 |
+
float,
|
156 |
+
f"Enter ControlNet conditioning scale ({settings.controlnet.conditioning_scale}): ",
|
157 |
+
settings.controlnet.conditioning_scale,
|
158 |
+
)
|
159 |
+
option = input(
|
160 |
+
f"Enter ControlNet control image path (Leave empty to reuse current): "
|
161 |
+
)
|
162 |
+
if option != "":
|
163 |
+
try:
|
164 |
+
new_image = Image.open(option)
|
165 |
+
settings.controlnet._control_image = new_image
|
166 |
+
except (AttributeError, FileNotFoundError) as e:
|
167 |
+
settings.controlnet._control_image = None
|
168 |
+
if (
|
169 |
+
not settings.controlnet.adapter_path
|
170 |
+
or not path.exists(settings.controlnet.adapter_path)
|
171 |
+
or not settings.controlnet._control_image
|
172 |
+
):
|
173 |
+
print("Invalid ControlNet settings! Disabling ControlNet")
|
174 |
+
settings.controlnet.enabled = False
|
175 |
+
|
176 |
+
if (
|
177 |
+
settings.controlnet.enabled != current_enabled
|
178 |
+
or settings.controlnet.adapter_path != current_adapter_path
|
179 |
+
):
|
180 |
+
settings.rebuild_pipeline = True
|
181 |
+
|
182 |
+
|
183 |
+
def interactive_lora(
|
184 |
+
config,
|
185 |
+
context,
|
186 |
+
menu_flag=False,
|
187 |
+
):
|
188 |
+
"""
|
189 |
+
@param menu_flag: Indicates whether this function was called from the main
|
190 |
+
interactive CLI menu; _True_ if called from the main menu, _False_ otherwise
|
191 |
+
"""
|
192 |
+
if context == None or context.lcm_text_to_image.pipeline == None:
|
193 |
+
print("Diffusion pipeline not initialized, please run a generation task first!")
|
194 |
+
return
|
195 |
+
|
196 |
+
print("> 1. Change LoRA weights")
|
197 |
+
print("> 2. Load new LoRA model")
|
198 |
+
option = user_value(
|
199 |
+
int,
|
200 |
+
"Enter a LoRA option (1): ",
|
201 |
+
1,
|
202 |
+
)
|
203 |
+
if option not in range(1, 3):
|
204 |
+
print("Wrong LoRA option!")
|
205 |
+
return
|
206 |
+
|
207 |
+
if option == 1:
|
208 |
+
update_weights = []
|
209 |
+
active_weights = get_active_lora_weights()
|
210 |
+
for lora in active_weights:
|
211 |
+
weight = user_value(
|
212 |
+
float,
|
213 |
+
f"Enter a new LoRA weight for {lora[0]} ({lora[1]}): ",
|
214 |
+
lora[1],
|
215 |
+
)
|
216 |
+
update_weights.append(
|
217 |
+
(
|
218 |
+
lora[0],
|
219 |
+
weight,
|
220 |
+
)
|
221 |
+
)
|
222 |
+
if len(update_weights) > 0:
|
223 |
+
update_lora_weights(
|
224 |
+
context.lcm_text_to_image.pipeline,
|
225 |
+
config.lcm_diffusion_setting,
|
226 |
+
update_weights,
|
227 |
+
)
|
228 |
+
elif option == 2:
|
229 |
+
# Load a new LoRA
|
230 |
+
settings = config.lcm_diffusion_setting
|
231 |
+
settings.lora.fuse = False
|
232 |
+
settings.lora.enabled = False
|
233 |
+
settings.lora.path = input("Enter LoRA model path: ")
|
234 |
+
settings.lora.weight = user_value(
|
235 |
+
float,
|
236 |
+
"Enter a LoRA weight (0.5): ",
|
237 |
+
0.5,
|
238 |
+
)
|
239 |
+
if not path.exists(settings.lora.path):
|
240 |
+
print("Invalid LoRA model path!")
|
241 |
+
return
|
242 |
+
settings.lora.enabled = True
|
243 |
+
load_lora_weight(context.lcm_text_to_image.pipeline, settings)
|
244 |
+
|
245 |
+
if menu_flag:
|
246 |
+
global _edit_lora_settings
|
247 |
+
_edit_lora_settings = False
|
248 |
+
option = input("Edit LoRA settings after every generation? (y/N): ")
|
249 |
+
if option.upper() == "Y":
|
250 |
+
_edit_lora_settings = True
|
251 |
+
|
252 |
+
|
253 |
+
def interactive_settings(
|
254 |
+
config,
|
255 |
+
context,
|
256 |
+
):
|
257 |
+
global _batch_count
|
258 |
+
settings = config.lcm_diffusion_setting
|
259 |
+
print("Enter generation settings (leave empty to use current value)")
|
260 |
+
print("> 1. Use LCM")
|
261 |
+
print("> 2. Use LCM-Lora")
|
262 |
+
print("> 3. Use OpenVINO")
|
263 |
+
option = user_value(
|
264 |
+
int,
|
265 |
+
"Select inference model option (1): ",
|
266 |
+
1,
|
267 |
+
)
|
268 |
+
if option not in range(1, 4):
|
269 |
+
print("Wrong inference model option! Falling back to defaults")
|
270 |
+
return
|
271 |
+
|
272 |
+
settings.use_lcm_lora = False
|
273 |
+
settings.use_openvino = False
|
274 |
+
if option == 1:
|
275 |
+
lcm_model_id = input(f"Enter LCM model ID ({settings.lcm_model_id}): ")
|
276 |
+
if lcm_model_id != "":
|
277 |
+
settings.lcm_model_id = lcm_model_id
|
278 |
+
elif option == 2:
|
279 |
+
settings.use_lcm_lora = True
|
280 |
+
lcm_lora_id = input(
|
281 |
+
f"Enter LCM-Lora model ID ({settings.lcm_lora.lcm_lora_id}): "
|
282 |
+
)
|
283 |
+
if lcm_lora_id != "":
|
284 |
+
settings.lcm_lora.lcm_lora_id = lcm_lora_id
|
285 |
+
base_model_id = input(
|
286 |
+
f"Enter Base model ID ({settings.lcm_lora.base_model_id}): "
|
287 |
+
)
|
288 |
+
if base_model_id != "":
|
289 |
+
settings.lcm_lora.base_model_id = base_model_id
|
290 |
+
elif option == 3:
|
291 |
+
settings.use_openvino = True
|
292 |
+
openvino_lcm_model_id = input(
|
293 |
+
f"Enter OpenVINO model ID ({settings.openvino_lcm_model_id}): "
|
294 |
+
)
|
295 |
+
if openvino_lcm_model_id != "":
|
296 |
+
settings.openvino_lcm_model_id = openvino_lcm_model_id
|
297 |
+
|
298 |
+
settings.use_offline_model = True
|
299 |
+
settings.use_tiny_auto_encoder = True
|
300 |
+
option = input("Work offline? (Y/n): ")
|
301 |
+
if option.upper() == "N":
|
302 |
+
settings.use_offline_model = False
|
303 |
+
option = input("Use Tiny Auto Encoder? (Y/n): ")
|
304 |
+
if option.upper() == "N":
|
305 |
+
settings.use_tiny_auto_encoder = False
|
306 |
+
|
307 |
+
settings.image_width = user_value(
|
308 |
+
int,
|
309 |
+
f"Image width ({settings.image_width}): ",
|
310 |
+
settings.image_width,
|
311 |
+
)
|
312 |
+
settings.image_height = user_value(
|
313 |
+
int,
|
314 |
+
f"Image height ({settings.image_height}): ",
|
315 |
+
settings.image_height,
|
316 |
+
)
|
317 |
+
settings.inference_steps = user_value(
|
318 |
+
int,
|
319 |
+
f"Inference steps ({settings.inference_steps}): ",
|
320 |
+
settings.inference_steps,
|
321 |
+
)
|
322 |
+
settings.guidance_scale = user_value(
|
323 |
+
float,
|
324 |
+
f"Guidance scale ({settings.guidance_scale}): ",
|
325 |
+
settings.guidance_scale,
|
326 |
+
)
|
327 |
+
settings.number_of_images = user_value(
|
328 |
+
int,
|
329 |
+
f"Number of images per batch ({settings.number_of_images}): ",
|
330 |
+
settings.number_of_images,
|
331 |
+
)
|
332 |
+
_batch_count = user_value(
|
333 |
+
int,
|
334 |
+
f"Batch count ({_batch_count}): ",
|
335 |
+
_batch_count,
|
336 |
+
)
|
337 |
+
# output_format = user_value(int, f"Output format (PNG)", 1)
|
338 |
+
print(config.lcm_diffusion_setting)
|
339 |
+
|
340 |
+
|
341 |
+
def interactive_txt2img(
|
342 |
+
config,
|
343 |
+
context,
|
344 |
+
):
|
345 |
+
global _batch_count
|
346 |
+
config.lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value
|
347 |
+
user_input = input("Write a prompt (write 'exit' to quit): ")
|
348 |
+
while True:
|
349 |
+
if user_input == "exit":
|
350 |
+
return
|
351 |
+
elif user_input == "":
|
352 |
+
user_input = config.lcm_diffusion_setting.prompt
|
353 |
+
config.lcm_diffusion_setting.prompt = user_input
|
354 |
+
for _ in range(0, _batch_count):
|
355 |
+
images = context.generate_text_to_image(
|
356 |
+
settings=config,
|
357 |
+
device=DEVICE,
|
358 |
+
)
|
359 |
+
context.save_images(
|
360 |
+
images,
|
361 |
+
config,
|
362 |
+
)
|
363 |
+
if _edit_lora_settings:
|
364 |
+
interactive_lora(
|
365 |
+
config,
|
366 |
+
context,
|
367 |
+
)
|
368 |
+
user_input = input("Write a prompt: ")
|
369 |
+
|
370 |
+
|
371 |
+
def interactive_img2img(
|
372 |
+
config,
|
373 |
+
context,
|
374 |
+
):
|
375 |
+
global _batch_count
|
376 |
+
settings = config.lcm_diffusion_setting
|
377 |
+
settings.diffusion_task = DiffusionTask.image_to_image.value
|
378 |
+
steps = settings.inference_steps
|
379 |
+
source_path = input("Image path: ")
|
380 |
+
if source_path == "":
|
381 |
+
print("Error : You need to provide a file in img2img mode")
|
382 |
+
return
|
383 |
+
settings.strength = user_value(
|
384 |
+
float,
|
385 |
+
f"img2img strength ({settings.strength}): ",
|
386 |
+
settings.strength,
|
387 |
+
)
|
388 |
+
settings.inference_steps = int(steps / settings.strength + 1)
|
389 |
+
user_input = input("Write a prompt (write 'exit' to quit): ")
|
390 |
+
while True:
|
391 |
+
if user_input == "exit":
|
392 |
+
settings.inference_steps = steps
|
393 |
+
return
|
394 |
+
settings.init_image = Image.open(source_path)
|
395 |
+
settings.prompt = user_input
|
396 |
+
for _ in range(0, _batch_count):
|
397 |
+
images = context.generate_text_to_image(
|
398 |
+
settings=config,
|
399 |
+
device=DEVICE,
|
400 |
+
)
|
401 |
+
context.save_images(
|
402 |
+
images,
|
403 |
+
config,
|
404 |
+
)
|
405 |
+
new_path = input(f"Image path ({source_path}): ")
|
406 |
+
if new_path != "":
|
407 |
+
source_path = new_path
|
408 |
+
settings.strength = user_value(
|
409 |
+
float,
|
410 |
+
f"img2img strength ({settings.strength}): ",
|
411 |
+
settings.strength,
|
412 |
+
)
|
413 |
+
if _edit_lora_settings:
|
414 |
+
interactive_lora(
|
415 |
+
config,
|
416 |
+
context,
|
417 |
+
)
|
418 |
+
settings.inference_steps = int(steps / settings.strength + 1)
|
419 |
+
user_input = input("Write a prompt: ")
|
420 |
+
|
421 |
+
|
422 |
+
def interactive_variations(
|
423 |
+
config,
|
424 |
+
context,
|
425 |
+
):
|
426 |
+
global _batch_count
|
427 |
+
settings = config.lcm_diffusion_setting
|
428 |
+
settings.diffusion_task = DiffusionTask.image_to_image.value
|
429 |
+
steps = settings.inference_steps
|
430 |
+
source_path = input("Image path: ")
|
431 |
+
if source_path == "":
|
432 |
+
print("Error : You need to provide a file in Image variations mode")
|
433 |
+
return
|
434 |
+
settings.strength = user_value(
|
435 |
+
float,
|
436 |
+
f"Image variations strength ({settings.strength}): ",
|
437 |
+
settings.strength,
|
438 |
+
)
|
439 |
+
settings.inference_steps = int(steps / settings.strength + 1)
|
440 |
+
while True:
|
441 |
+
settings.init_image = Image.open(source_path)
|
442 |
+
settings.prompt = ""
|
443 |
+
for i in range(0, _batch_count):
|
444 |
+
generate_image_variations(
|
445 |
+
settings.init_image,
|
446 |
+
settings.strength,
|
447 |
+
)
|
448 |
+
if _edit_lora_settings:
|
449 |
+
interactive_lora(
|
450 |
+
config,
|
451 |
+
context,
|
452 |
+
)
|
453 |
+
user_input = input("Continue in Image variations mode? (Y/n): ")
|
454 |
+
if user_input.upper() == "N":
|
455 |
+
settings.inference_steps = steps
|
456 |
+
return
|
457 |
+
new_path = input(f"Image path ({source_path}): ")
|
458 |
+
if new_path != "":
|
459 |
+
source_path = new_path
|
460 |
+
settings.strength = user_value(
|
461 |
+
float,
|
462 |
+
f"Image variations strength ({settings.strength}): ",
|
463 |
+
settings.strength,
|
464 |
+
)
|
465 |
+
settings.inference_steps = int(steps / settings.strength + 1)
|
466 |
+
|
467 |
+
|
468 |
+
def interactive_edsr(
|
469 |
+
config,
|
470 |
+
context,
|
471 |
+
):
|
472 |
+
source_path = input("Image path: ")
|
473 |
+
if source_path == "":
|
474 |
+
print("Error : You need to provide a file in EDSR mode")
|
475 |
+
return
|
476 |
+
while True:
|
477 |
+
output_path = FastStableDiffusionPaths.get_upscale_filepath(
|
478 |
+
source_path,
|
479 |
+
2,
|
480 |
+
config.generated_images.format,
|
481 |
+
)
|
482 |
+
result = upscale_image(
|
483 |
+
context,
|
484 |
+
source_path,
|
485 |
+
output_path,
|
486 |
+
2,
|
487 |
+
)
|
488 |
+
user_input = input("Continue in EDSR upscale mode? (Y/n): ")
|
489 |
+
if user_input.upper() == "N":
|
490 |
+
return
|
491 |
+
new_path = input(f"Image path ({source_path}): ")
|
492 |
+
if new_path != "":
|
493 |
+
source_path = new_path
|
494 |
+
|
495 |
+
|
496 |
+
def interactive_sdupscale_settings(config):
|
497 |
+
steps = config.lcm_diffusion_setting.inference_steps
|
498 |
+
custom_settings = {}
|
499 |
+
print("> 1. Upscale whole image")
|
500 |
+
print("> 2. Define custom tiles (advanced)")
|
501 |
+
option = user_value(
|
502 |
+
int,
|
503 |
+
"Select an SD Upscale option (1): ",
|
504 |
+
1,
|
505 |
+
)
|
506 |
+
if option not in range(1, 3):
|
507 |
+
print("Wrong SD Upscale option!")
|
508 |
+
return
|
509 |
+
|
510 |
+
# custom_settings["source_file"] = args.file
|
511 |
+
custom_settings["source_file"] = ""
|
512 |
+
new_path = input(f"Input image path ({custom_settings['source_file']}): ")
|
513 |
+
if new_path != "":
|
514 |
+
custom_settings["source_file"] = new_path
|
515 |
+
if custom_settings["source_file"] == "":
|
516 |
+
print("Error : You need to provide a file in SD Upscale mode")
|
517 |
+
return
|
518 |
+
custom_settings["target_file"] = None
|
519 |
+
if option == 2:
|
520 |
+
custom_settings["target_file"] = input("Image to patch: ")
|
521 |
+
if custom_settings["target_file"] == "":
|
522 |
+
print("No target file provided, upscaling whole input image instead!")
|
523 |
+
custom_settings["target_file"] = None
|
524 |
+
option = 1
|
525 |
+
custom_settings["output_format"] = config.generated_images.format
|
526 |
+
custom_settings["strength"] = user_value(
|
527 |
+
float,
|
528 |
+
f"SD Upscale strength ({config.lcm_diffusion_setting.strength}): ",
|
529 |
+
config.lcm_diffusion_setting.strength,
|
530 |
+
)
|
531 |
+
config.lcm_diffusion_setting.inference_steps = int(
|
532 |
+
steps / custom_settings["strength"] + 1
|
533 |
+
)
|
534 |
+
if option == 1:
|
535 |
+
custom_settings["scale_factor"] = user_value(
|
536 |
+
float,
|
537 |
+
f"Scale factor (2.0): ",
|
538 |
+
2.0,
|
539 |
+
)
|
540 |
+
custom_settings["tile_size"] = user_value(
|
541 |
+
int,
|
542 |
+
f"Split input image into tiles of the following size, in pixels (256): ",
|
543 |
+
256,
|
544 |
+
)
|
545 |
+
custom_settings["tile_overlap"] = user_value(
|
546 |
+
int,
|
547 |
+
f"Tile overlap, in pixels (16): ",
|
548 |
+
16,
|
549 |
+
)
|
550 |
+
elif option == 2:
|
551 |
+
custom_settings["scale_factor"] = user_value(
|
552 |
+
float,
|
553 |
+
"Input image to Image-to-patch scale_factor (2.0): ",
|
554 |
+
2.0,
|
555 |
+
)
|
556 |
+
custom_settings["tile_size"] = 256
|
557 |
+
custom_settings["tile_overlap"] = 16
|
558 |
+
custom_settings["prompt"] = input(
|
559 |
+
"Write a prompt describing the input image (optional): "
|
560 |
+
)
|
561 |
+
custom_settings["tiles"] = []
|
562 |
+
if option == 2:
|
563 |
+
add_tile = True
|
564 |
+
while add_tile:
|
565 |
+
print("=== Define custom SD Upscale tile ===")
|
566 |
+
tile_x = user_value(
|
567 |
+
int,
|
568 |
+
"Enter tile's X position: ",
|
569 |
+
0,
|
570 |
+
)
|
571 |
+
tile_y = user_value(
|
572 |
+
int,
|
573 |
+
"Enter tile's Y position: ",
|
574 |
+
0,
|
575 |
+
)
|
576 |
+
tile_w = user_value(
|
577 |
+
int,
|
578 |
+
"Enter tile's width (256): ",
|
579 |
+
256,
|
580 |
+
)
|
581 |
+
tile_h = user_value(
|
582 |
+
int,
|
583 |
+
"Enter tile's height (256): ",
|
584 |
+
256,
|
585 |
+
)
|
586 |
+
tile_scale = user_value(
|
587 |
+
float,
|
588 |
+
"Enter tile's scale factor (2.0): ",
|
589 |
+
2.0,
|
590 |
+
)
|
591 |
+
tile_prompt = input("Enter tile's prompt (optional): ")
|
592 |
+
custom_settings["tiles"].append(
|
593 |
+
{
|
594 |
+
"x": tile_x,
|
595 |
+
"y": tile_y,
|
596 |
+
"w": tile_w,
|
597 |
+
"h": tile_h,
|
598 |
+
"mask_box": None,
|
599 |
+
"prompt": tile_prompt,
|
600 |
+
"scale_factor": tile_scale,
|
601 |
+
}
|
602 |
+
)
|
603 |
+
tile_option = input("Do you want to define another tile? (y/N): ")
|
604 |
+
if tile_option == "" or tile_option.upper() == "N":
|
605 |
+
add_tile = False
|
606 |
+
|
607 |
+
return custom_settings
|
608 |
+
|
609 |
+
|
610 |
+
def interactive_sdupscale(
|
611 |
+
config,
|
612 |
+
context,
|
613 |
+
):
|
614 |
+
settings = config.lcm_diffusion_setting
|
615 |
+
settings.diffusion_task = DiffusionTask.image_to_image.value
|
616 |
+
settings.init_image = ""
|
617 |
+
source_path = ""
|
618 |
+
steps = settings.inference_steps
|
619 |
+
|
620 |
+
while True:
|
621 |
+
custom_upscale_settings = None
|
622 |
+
option = input("Edit custom SD Upscale settings? (y/N): ")
|
623 |
+
if option.upper() == "Y":
|
624 |
+
config.lcm_diffusion_setting.inference_steps = steps
|
625 |
+
custom_upscale_settings = interactive_sdupscale_settings(config)
|
626 |
+
if not custom_upscale_settings:
|
627 |
+
return
|
628 |
+
source_path = custom_upscale_settings["source_file"]
|
629 |
+
else:
|
630 |
+
new_path = input(f"Image path ({source_path}): ")
|
631 |
+
if new_path != "":
|
632 |
+
source_path = new_path
|
633 |
+
if source_path == "":
|
634 |
+
print("Error : You need to provide a file in SD Upscale mode")
|
635 |
+
return
|
636 |
+
settings.strength = user_value(
|
637 |
+
float,
|
638 |
+
f"SD Upscale strength ({settings.strength}): ",
|
639 |
+
settings.strength,
|
640 |
+
)
|
641 |
+
settings.inference_steps = int(steps / settings.strength + 1)
|
642 |
+
|
643 |
+
output_path = FastStableDiffusionPaths.get_upscale_filepath(
|
644 |
+
source_path,
|
645 |
+
2,
|
646 |
+
config.generated_images.format,
|
647 |
+
)
|
648 |
+
generate_upscaled_image(
|
649 |
+
config,
|
650 |
+
source_path,
|
651 |
+
settings.strength,
|
652 |
+
upscale_settings=custom_upscale_settings,
|
653 |
+
context=context,
|
654 |
+
tile_overlap=32 if settings.use_openvino else 16,
|
655 |
+
output_path=output_path,
|
656 |
+
image_format=config.generated_images.format,
|
657 |
+
)
|
658 |
+
user_input = input("Continue in SD Upscale mode? (Y/n): ")
|
659 |
+
if user_input.upper() == "N":
|
660 |
+
settings.inference_steps = steps
|
661 |
+
return
|
src/frontend/utils.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import platform
|
2 |
+
from os import path
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
from backend.device import is_openvino_device
|
6 |
+
from paths import get_file_name
|
7 |
+
|
8 |
+
|
9 |
+
def is_reshape_required(
|
10 |
+
prev_width: int,
|
11 |
+
cur_width: int,
|
12 |
+
prev_height: int,
|
13 |
+
cur_height: int,
|
14 |
+
prev_model: int,
|
15 |
+
cur_model: int,
|
16 |
+
prev_num_of_images: int,
|
17 |
+
cur_num_of_images: int,
|
18 |
+
) -> bool:
|
19 |
+
reshape_required = False
|
20 |
+
if (
|
21 |
+
prev_width != cur_width
|
22 |
+
or prev_height != cur_height
|
23 |
+
or prev_model != cur_model
|
24 |
+
or prev_num_of_images != cur_num_of_images
|
25 |
+
):
|
26 |
+
print("Reshape and compile")
|
27 |
+
reshape_required = True
|
28 |
+
|
29 |
+
return reshape_required
|
30 |
+
|
31 |
+
|
32 |
+
def enable_openvino_controls() -> bool:
|
33 |
+
return (
|
34 |
+
is_openvino_device()
|
35 |
+
and platform.system().lower() != "darwin"
|
36 |
+
and platform.processor().lower() != "arm"
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
def get_valid_model_id(
|
41 |
+
models: List,
|
42 |
+
model_id: str,
|
43 |
+
default_model: str = "",
|
44 |
+
) -> str:
|
45 |
+
if len(models) == 0:
|
46 |
+
print(
|
47 |
+
"Warning: model configuration file/directory is empty,please add some models."
|
48 |
+
)
|
49 |
+
return ""
|
50 |
+
if model_id == "":
|
51 |
+
if default_model:
|
52 |
+
return default_model
|
53 |
+
else:
|
54 |
+
return models[0]
|
55 |
+
|
56 |
+
if model_id in models:
|
57 |
+
return model_id
|
58 |
+
else:
|
59 |
+
if model_id:
|
60 |
+
print(
|
61 |
+
f"Error:{model_id} Model not found in configuration file,so using first model : {models[0]}"
|
62 |
+
)
|
63 |
+
return models[0]
|
64 |
+
|
65 |
+
|
66 |
+
def get_valid_lora_model(
|
67 |
+
models: List,
|
68 |
+
cur_model: str,
|
69 |
+
lora_models_dir: str,
|
70 |
+
) -> str:
|
71 |
+
if cur_model == "" or cur_model is None:
|
72 |
+
print(
|
73 |
+
f"No lora models found, please add lora models to {lora_models_dir} directory"
|
74 |
+
)
|
75 |
+
return ""
|
76 |
+
else:
|
77 |
+
if path.exists(cur_model):
|
78 |
+
return get_file_name(cur_model)
|
79 |
+
else:
|
80 |
+
print(f"Lora model {cur_model} not found")
|
81 |
+
if len(models) > 0:
|
82 |
+
print(f"Fallback model - {models[0]}")
|
83 |
+
return get_file_name(models[0])
|
84 |
+
else:
|
85 |
+
print(
|
86 |
+
f"No lora models found, please add lora models to {lora_models_dir} directory"
|
87 |
+
)
|
88 |
+
return ""
|