Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- src/backend/pipelines/lcm.py +124 -0
- src/backend/pipelines/lcm_lora.py +81 -0
src/backend/pipelines/lcm.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from constants import LCM_DEFAULT_MODEL
|
2 |
+
from diffusers import (
|
3 |
+
DiffusionPipeline,
|
4 |
+
AutoencoderTiny,
|
5 |
+
UNet2DConditionModel,
|
6 |
+
LCMScheduler,
|
7 |
+
StableDiffusionPipeline,
|
8 |
+
)
|
9 |
+
import torch
|
10 |
+
from backend.tiny_autoencoder import get_tiny_autoencoder_repo_id
|
11 |
+
from typing import Any
|
12 |
+
from diffusers import (
|
13 |
+
LCMScheduler,
|
14 |
+
StableDiffusionImg2ImgPipeline,
|
15 |
+
StableDiffusionXLImg2ImgPipeline,
|
16 |
+
AutoPipelineForText2Image,
|
17 |
+
AutoPipelineForImage2Image,
|
18 |
+
StableDiffusionControlNetPipeline,
|
19 |
+
)
|
20 |
+
import pathlib
|
21 |
+
|
22 |
+
|
23 |
+
def _get_lcm_pipeline_from_base_model(
|
24 |
+
lcm_model_id: str,
|
25 |
+
base_model_id: str,
|
26 |
+
use_local_model: bool,
|
27 |
+
):
|
28 |
+
pipeline = None
|
29 |
+
unet = UNet2DConditionModel.from_pretrained(
|
30 |
+
lcm_model_id,
|
31 |
+
torch_dtype=torch.float32,
|
32 |
+
local_files_only=use_local_model,
|
33 |
+
resume_download=True,
|
34 |
+
)
|
35 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
36 |
+
base_model_id,
|
37 |
+
unet=unet,
|
38 |
+
torch_dtype=torch.float32,
|
39 |
+
local_files_only=use_local_model,
|
40 |
+
resume_download=True,
|
41 |
+
)
|
42 |
+
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
|
43 |
+
return pipeline
|
44 |
+
|
45 |
+
|
46 |
+
def load_taesd(
|
47 |
+
pipeline: Any,
|
48 |
+
use_local_model: bool = False,
|
49 |
+
torch_data_type: torch.dtype = torch.float32,
|
50 |
+
):
|
51 |
+
tiny_vae = get_tiny_autoencoder_repo_id(pipeline.__class__.__name__)
|
52 |
+
pipeline.vae = AutoencoderTiny.from_pretrained(
|
53 |
+
tiny_vae,
|
54 |
+
torch_dtype=torch_data_type,
|
55 |
+
local_files_only=use_local_model,
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
def get_lcm_model_pipeline(
|
60 |
+
model_id: str = LCM_DEFAULT_MODEL,
|
61 |
+
use_local_model: bool = False,
|
62 |
+
pipeline_args={},
|
63 |
+
):
|
64 |
+
pipeline = None
|
65 |
+
if model_id == "latent-consistency/lcm-sdxl":
|
66 |
+
pipeline = _get_lcm_pipeline_from_base_model(
|
67 |
+
model_id,
|
68 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
69 |
+
use_local_model,
|
70 |
+
)
|
71 |
+
|
72 |
+
elif model_id == "latent-consistency/lcm-ssd-1b":
|
73 |
+
pipeline = _get_lcm_pipeline_from_base_model(
|
74 |
+
model_id,
|
75 |
+
"segmind/SSD-1B",
|
76 |
+
use_local_model,
|
77 |
+
)
|
78 |
+
elif pathlib.Path(model_id).suffix == ".safetensors":
|
79 |
+
# When loading a .safetensors model, the pipeline has to be created
|
80 |
+
# with StableDiffusionPipeline() since it's the only class that
|
81 |
+
# defines the method from_single_file()
|
82 |
+
dummy_pipeline = StableDiffusionPipeline.from_single_file(
|
83 |
+
model_id,
|
84 |
+
safety_checker=None,
|
85 |
+
run_safety_checker=False,
|
86 |
+
load_safety_checker=False,
|
87 |
+
local_files_only=use_local_model,
|
88 |
+
use_safetensors=True,
|
89 |
+
)
|
90 |
+
if "lcm" in model_id.lower():
|
91 |
+
dummy_pipeline.scheduler = LCMScheduler.from_config(
|
92 |
+
dummy_pipeline.scheduler.config
|
93 |
+
)
|
94 |
+
|
95 |
+
pipeline = AutoPipelineForText2Image.from_pipe(
|
96 |
+
dummy_pipeline,
|
97 |
+
**pipeline_args,
|
98 |
+
)
|
99 |
+
del dummy_pipeline
|
100 |
+
else:
|
101 |
+
# pipeline = DiffusionPipeline.from_pretrained(
|
102 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
103 |
+
model_id,
|
104 |
+
local_files_only=use_local_model,
|
105 |
+
**pipeline_args,
|
106 |
+
)
|
107 |
+
|
108 |
+
return pipeline
|
109 |
+
|
110 |
+
|
111 |
+
def get_image_to_image_pipeline(pipeline: Any) -> Any:
|
112 |
+
components = pipeline.components
|
113 |
+
pipeline_class = pipeline.__class__.__name__
|
114 |
+
if (
|
115 |
+
pipeline_class == "LatentConsistencyModelPipeline"
|
116 |
+
or pipeline_class == "StableDiffusionPipeline"
|
117 |
+
):
|
118 |
+
return StableDiffusionImg2ImgPipeline(**components)
|
119 |
+
elif pipeline_class == "StableDiffusionControlNetPipeline":
|
120 |
+
return AutoPipelineForImage2Image.from_pipe(pipeline)
|
121 |
+
elif pipeline_class == "StableDiffusionXLPipeline":
|
122 |
+
return StableDiffusionXLImg2ImgPipeline(**components)
|
123 |
+
else:
|
124 |
+
raise Exception(f"Unknown pipeline {pipeline_class}")
|
src/backend/pipelines/lcm_lora.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pathlib
|
2 |
+
from os import path
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from diffusers import (
|
6 |
+
AutoPipelineForText2Image,
|
7 |
+
LCMScheduler,
|
8 |
+
StableDiffusionPipeline,
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
def load_lcm_weights(
|
13 |
+
pipeline,
|
14 |
+
use_local_model,
|
15 |
+
lcm_lora_id,
|
16 |
+
):
|
17 |
+
kwargs = {
|
18 |
+
"local_files_only": use_local_model,
|
19 |
+
"weight_name": "pytorch_lora_weights.safetensors",
|
20 |
+
}
|
21 |
+
pipeline.load_lora_weights(
|
22 |
+
lcm_lora_id,
|
23 |
+
**kwargs,
|
24 |
+
adapter_name="lcm",
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def get_lcm_lora_pipeline(
|
29 |
+
base_model_id: str,
|
30 |
+
lcm_lora_id: str,
|
31 |
+
use_local_model: bool,
|
32 |
+
torch_data_type: torch.dtype,
|
33 |
+
pipeline_args={},
|
34 |
+
):
|
35 |
+
if pathlib.Path(base_model_id).suffix == ".safetensors":
|
36 |
+
# SD 1.5 models only
|
37 |
+
# When loading a .safetensors model, the pipeline has to be created
|
38 |
+
# with StableDiffusionPipeline() since it's the only class that
|
39 |
+
# defines the method from_single_file(); afterwards a new pipeline
|
40 |
+
# is created using AutoPipelineForText2Image() for ControlNet
|
41 |
+
# support, in case ControlNet is enabled
|
42 |
+
if not path.exists(base_model_id):
|
43 |
+
raise FileNotFoundError(
|
44 |
+
f"Model file not found,Please check your model path: {base_model_id}"
|
45 |
+
)
|
46 |
+
print("Using single file Safetensors model (Supported models - SD 1.5 models)")
|
47 |
+
|
48 |
+
dummy_pipeline = StableDiffusionPipeline.from_single_file(
|
49 |
+
base_model_id,
|
50 |
+
torch_dtype=torch_data_type,
|
51 |
+
safety_checker=None,
|
52 |
+
local_files_only=use_local_model,
|
53 |
+
use_safetensors=True,
|
54 |
+
)
|
55 |
+
pipeline = AutoPipelineForText2Image.from_pipe(
|
56 |
+
dummy_pipeline,
|
57 |
+
**pipeline_args,
|
58 |
+
)
|
59 |
+
del dummy_pipeline
|
60 |
+
else:
|
61 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
62 |
+
base_model_id,
|
63 |
+
torch_dtype=torch_data_type,
|
64 |
+
local_files_only=use_local_model,
|
65 |
+
**pipeline_args,
|
66 |
+
)
|
67 |
+
|
68 |
+
load_lcm_weights(
|
69 |
+
pipeline,
|
70 |
+
use_local_model,
|
71 |
+
lcm_lora_id,
|
72 |
+
)
|
73 |
+
# Always fuse LCM-LoRA
|
74 |
+
# pipeline.fuse_lora()
|
75 |
+
|
76 |
+
if "lcm" in lcm_lora_id.lower() or "hypersd" in lcm_lora_id.lower():
|
77 |
+
print("LCM LoRA model detected so using recommended LCMScheduler")
|
78 |
+
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
|
79 |
+
|
80 |
+
# pipeline.unet.to(memory_format=torch.channels_last)
|
81 |
+
return pipeline
|