Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files
src/backend/openvino/ov_hc_stablediffusion_pipeline.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This is an experimental pipeline used to test AI PC NPU and GPU"""
|
2 |
+
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
from diffusers import EulerDiscreteScheduler,LCMScheduler
|
6 |
+
from huggingface_hub import snapshot_download
|
7 |
+
from PIL import Image
|
8 |
+
from backend.openvino.stable_diffusion_engine import (
|
9 |
+
StableDiffusionEngineAdvanced,
|
10 |
+
LatentConsistencyEngineAdvanced
|
11 |
+
)
|
12 |
+
|
13 |
+
|
14 |
+
class OvHcStableDiffusion:
|
15 |
+
"OpenVINO Heterogeneous compute Stablediffusion"
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
model_path,
|
20 |
+
device: list = ["GPU", "NPU", "GPU", "GPU"],
|
21 |
+
):
|
22 |
+
model_dir = Path(snapshot_download(model_path))
|
23 |
+
self.scheduler = EulerDiscreteScheduler(
|
24 |
+
beta_start=0.00085,
|
25 |
+
beta_end=0.012,
|
26 |
+
beta_schedule="scaled_linear",
|
27 |
+
)
|
28 |
+
self.ov_sd_pipleline = StableDiffusionEngineAdvanced(
|
29 |
+
model=model_dir,
|
30 |
+
device=device,
|
31 |
+
)
|
32 |
+
|
33 |
+
def generate(
|
34 |
+
self,
|
35 |
+
prompt: str,
|
36 |
+
neg_prompt: str,
|
37 |
+
init_image: Image = None,
|
38 |
+
strength: float = 1.0,
|
39 |
+
):
|
40 |
+
image = self.ov_sd_pipleline(
|
41 |
+
prompt=prompt,
|
42 |
+
negative_prompt=neg_prompt,
|
43 |
+
init_image=init_image,
|
44 |
+
strength=strength,
|
45 |
+
num_inference_steps=25,
|
46 |
+
scheduler=self.scheduler,
|
47 |
+
)
|
48 |
+
image_rgb = image[..., ::-1]
|
49 |
+
return Image.fromarray(image_rgb)
|
50 |
+
|
51 |
+
|
52 |
+
class OvHcLatentConsistency:
|
53 |
+
"""
|
54 |
+
OpenVINO Heterogeneous compute Latent consistency models
|
55 |
+
For the current Intel Cor Ultra, the Text Encoder and Unet can run on NPU
|
56 |
+
Supports following - Text to image , Image to image and image variations
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
model_path,
|
62 |
+
device: list = ["NPU", "NPU", "GPU"],
|
63 |
+
):
|
64 |
+
|
65 |
+
model_dir = Path(snapshot_download(model_path))
|
66 |
+
|
67 |
+
self.scheduler = LCMScheduler(
|
68 |
+
beta_start=0.001,
|
69 |
+
beta_end=0.01,
|
70 |
+
)
|
71 |
+
self.ov_sd_pipleline = LatentConsistencyEngineAdvanced(
|
72 |
+
model=model_dir,
|
73 |
+
device=device,
|
74 |
+
)
|
75 |
+
|
76 |
+
def generate(
|
77 |
+
self,
|
78 |
+
prompt: str,
|
79 |
+
neg_prompt: str,
|
80 |
+
init_image: Image = None,
|
81 |
+
num_inference_steps=4,
|
82 |
+
strength: float = 0.5,
|
83 |
+
):
|
84 |
+
image = self.ov_sd_pipleline(
|
85 |
+
prompt=prompt,
|
86 |
+
init_image = init_image,
|
87 |
+
strength = strength,
|
88 |
+
num_inference_steps=num_inference_steps,
|
89 |
+
scheduler=self.scheduler,
|
90 |
+
seed=None,
|
91 |
+
)
|
92 |
+
|
93 |
+
return image
|
src/backend/openvino/pipelines.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
from optimum.intel.openvino import OVDiffusionPipeline
|
5 |
+
from optimum.intel.openvino.modeling_diffusion import (
|
6 |
+
OVModelVae,
|
7 |
+
OVModelVaeDecoder,
|
8 |
+
OVModelVaeEncoder,
|
9 |
+
)
|
10 |
+
|
11 |
+
from backend.device import is_openvino_device
|
12 |
+
from backend.tiny_autoencoder import get_tiny_autoencoder_repo_id
|
13 |
+
from constants import DEVICE, LCM_DEFAULT_MODEL_OPENVINO
|
14 |
+
from paths import get_base_folder_name
|
15 |
+
|
16 |
+
if is_openvino_device():
|
17 |
+
from huggingface_hub import snapshot_download
|
18 |
+
from optimum.intel.openvino.modeling_diffusion import (
|
19 |
+
OVBaseModel,
|
20 |
+
OVStableDiffusionImg2ImgPipeline,
|
21 |
+
OVStableDiffusionPipeline,
|
22 |
+
OVStableDiffusionXLImg2ImgPipeline,
|
23 |
+
OVStableDiffusionXLPipeline,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
def ov_load_tiny_autoencoder(
|
28 |
+
pipeline: Any,
|
29 |
+
use_local_model: bool = False,
|
30 |
+
):
|
31 |
+
taesd_dir = snapshot_download(
|
32 |
+
repo_id=get_tiny_autoencoder_repo_id(pipeline.__class__.__name__),
|
33 |
+
local_files_only=use_local_model,
|
34 |
+
)
|
35 |
+
vae_decoder = OVModelVaeDecoder(
|
36 |
+
model=OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"),
|
37 |
+
parent_pipeline=pipeline,
|
38 |
+
model_name="vae_decoder",
|
39 |
+
)
|
40 |
+
vae_encoder = OVModelVaeEncoder(
|
41 |
+
model=OVBaseModel.load_model(f"{taesd_dir}/vae_encoder/openvino_model.xml"),
|
42 |
+
parent_pipeline=pipeline,
|
43 |
+
model_name="vae_encoder",
|
44 |
+
)
|
45 |
+
pipeline.vae = OVModelVae(
|
46 |
+
decoder=vae_decoder,
|
47 |
+
encoder=vae_encoder,
|
48 |
+
)
|
49 |
+
pipeline.vae.config.scaling_factor = 1.0
|
50 |
+
|
51 |
+
|
52 |
+
def get_ov_text_to_image_pipeline(
|
53 |
+
model_id: str = LCM_DEFAULT_MODEL_OPENVINO,
|
54 |
+
use_local_model: bool = False,
|
55 |
+
) -> Any:
|
56 |
+
if "xl" in get_base_folder_name(model_id).lower():
|
57 |
+
pipeline = OVStableDiffusionXLPipeline.from_pretrained(
|
58 |
+
model_id,
|
59 |
+
local_files_only=use_local_model,
|
60 |
+
ov_config={"CACHE_DIR": ""},
|
61 |
+
device=DEVICE.upper(),
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
pipeline = OVStableDiffusionPipeline.from_pretrained(
|
65 |
+
model_id,
|
66 |
+
local_files_only=use_local_model,
|
67 |
+
ov_config={"CACHE_DIR": ""},
|
68 |
+
device=DEVICE.upper(),
|
69 |
+
)
|
70 |
+
|
71 |
+
return pipeline
|
72 |
+
|
73 |
+
|
74 |
+
def get_ov_image_to_image_pipeline(
|
75 |
+
model_id: str = LCM_DEFAULT_MODEL_OPENVINO,
|
76 |
+
use_local_model: bool = False,
|
77 |
+
) -> Any:
|
78 |
+
if "xl" in get_base_folder_name(model_id).lower():
|
79 |
+
pipeline = OVStableDiffusionXLImg2ImgPipeline.from_pretrained(
|
80 |
+
model_id,
|
81 |
+
local_files_only=use_local_model,
|
82 |
+
ov_config={"CACHE_DIR": ""},
|
83 |
+
device=DEVICE.upper(),
|
84 |
+
)
|
85 |
+
else:
|
86 |
+
pipeline = OVStableDiffusionImg2ImgPipeline.from_pretrained(
|
87 |
+
model_id,
|
88 |
+
local_files_only=use_local_model,
|
89 |
+
ov_config={"CACHE_DIR": ""},
|
90 |
+
device=DEVICE.upper(),
|
91 |
+
)
|
92 |
+
return pipeline
|
93 |
+
|
94 |
+
|
95 |
+
def get_ov_diffusion_pipeline(
|
96 |
+
model_id: str,
|
97 |
+
use_local_model: bool = False,
|
98 |
+
) -> Any:
|
99 |
+
pipeline = OVDiffusionPipeline.from_pretrained(
|
100 |
+
model_id,
|
101 |
+
local_files_only=use_local_model,
|
102 |
+
ov_config={"CACHE_DIR": ""},
|
103 |
+
device=DEVICE.upper(),
|
104 |
+
)
|
105 |
+
return pipeline
|
src/backend/openvino/stable_diffusion_engine.py
ADDED
@@ -0,0 +1,1817 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright(C) 2022-2023 Intel Corporation
|
3 |
+
SPDX - License - Identifier: Apache - 2.0
|
4 |
+
|
5 |
+
"""
|
6 |
+
import inspect
|
7 |
+
from typing import Union, Optional, Any, List, Dict
|
8 |
+
import numpy as np
|
9 |
+
# openvino
|
10 |
+
from openvino.runtime import Core
|
11 |
+
# tokenizer
|
12 |
+
from transformers import CLIPTokenizer
|
13 |
+
import torch
|
14 |
+
import random
|
15 |
+
|
16 |
+
from diffusers import DiffusionPipeline
|
17 |
+
from diffusers.schedulers import (DDIMScheduler,
|
18 |
+
LMSDiscreteScheduler,
|
19 |
+
PNDMScheduler,
|
20 |
+
EulerDiscreteScheduler,
|
21 |
+
EulerAncestralDiscreteScheduler)
|
22 |
+
|
23 |
+
|
24 |
+
from diffusers.image_processor import VaeImageProcessor
|
25 |
+
from diffusers.utils.torch_utils import randn_tensor
|
26 |
+
from diffusers.utils import PIL_INTERPOLATION
|
27 |
+
|
28 |
+
import cv2
|
29 |
+
import os
|
30 |
+
import sys
|
31 |
+
|
32 |
+
# for multithreading
|
33 |
+
import concurrent.futures
|
34 |
+
|
35 |
+
#For GIF
|
36 |
+
import PIL
|
37 |
+
from PIL import Image
|
38 |
+
import glob
|
39 |
+
import json
|
40 |
+
import time
|
41 |
+
|
42 |
+
def scale_fit_to_window(dst_width:int, dst_height:int, image_width:int, image_height:int):
|
43 |
+
"""
|
44 |
+
Preprocessing helper function for calculating image size for resize with peserving original aspect ratio
|
45 |
+
and fitting image to specific window size
|
46 |
+
|
47 |
+
Parameters:
|
48 |
+
dst_width (int): destination window width
|
49 |
+
dst_height (int): destination window height
|
50 |
+
image_width (int): source image width
|
51 |
+
image_height (int): source image height
|
52 |
+
Returns:
|
53 |
+
result_width (int): calculated width for resize
|
54 |
+
result_height (int): calculated height for resize
|
55 |
+
"""
|
56 |
+
im_scale = min(dst_height / image_height, dst_width / image_width)
|
57 |
+
return int(im_scale * image_width), int(im_scale * image_height)
|
58 |
+
|
59 |
+
def preprocess(image: PIL.Image.Image, ht=512, wt=512):
|
60 |
+
"""
|
61 |
+
Image preprocessing function. Takes image in PIL.Image format, resizes it to keep aspect ration and fits to model input window 512x512,
|
62 |
+
then converts it to np.ndarray and adds padding with zeros on right or bottom side of image (depends from aspect ratio), after that
|
63 |
+
converts data to float32 data type and change range of values from [0, 255] to [-1, 1], finally, converts data layout from planar NHWC to NCHW.
|
64 |
+
The function returns preprocessed input tensor and padding size, which can be used in postprocessing.
|
65 |
+
|
66 |
+
Parameters:
|
67 |
+
image (PIL.Image.Image): input image
|
68 |
+
Returns:
|
69 |
+
image (np.ndarray): preprocessed image tensor
|
70 |
+
meta (Dict): dictionary with preprocessing metadata info
|
71 |
+
"""
|
72 |
+
|
73 |
+
src_width, src_height = image.size
|
74 |
+
image = image.convert('RGB')
|
75 |
+
dst_width, dst_height = scale_fit_to_window(
|
76 |
+
wt, ht, src_width, src_height)
|
77 |
+
image = np.array(image.resize((dst_width, dst_height),
|
78 |
+
resample=PIL.Image.Resampling.LANCZOS))[None, :]
|
79 |
+
|
80 |
+
pad_width = wt - dst_width
|
81 |
+
pad_height = ht - dst_height
|
82 |
+
pad = ((0, 0), (0, pad_height), (0, pad_width), (0, 0))
|
83 |
+
image = np.pad(image, pad, mode="constant")
|
84 |
+
image = image.astype(np.float32) / 255.0
|
85 |
+
image = 2.0 * image - 1.0
|
86 |
+
image = image.transpose(0, 3, 1, 2)
|
87 |
+
|
88 |
+
return image, {"padding": pad, "src_width": src_width, "src_height": src_height}
|
89 |
+
|
90 |
+
def try_enable_npu_turbo(device, core):
|
91 |
+
import platform
|
92 |
+
if "windows" in platform.system().lower():
|
93 |
+
if "NPU" in device and "3720" not in core.get_property('NPU', 'DEVICE_ARCHITECTURE'):
|
94 |
+
try:
|
95 |
+
core.set_property(properties={'NPU_TURBO': 'YES'},device_name='NPU')
|
96 |
+
except:
|
97 |
+
print(f"Failed loading NPU_TURBO for device {device}. Skipping... ")
|
98 |
+
else:
|
99 |
+
print_npu_turbo_art()
|
100 |
+
else:
|
101 |
+
print(f"Skipping NPU_TURBO for device {device}")
|
102 |
+
elif "linux" in platform.system().lower():
|
103 |
+
if os.path.isfile('/sys/module/intel_vpu/parameters/test_mode'):
|
104 |
+
with open('/sys/module/intel_vpu/version', 'r') as f:
|
105 |
+
version = f.readline().split()[0]
|
106 |
+
if tuple(map(int, version.split('.'))) < tuple(map(int, '1.9.0'.split('.'))):
|
107 |
+
print(f"The driver intel_vpu-1.9.0 (or later) needs to be loaded for NPU Turbo (currently {version}). Skipping...")
|
108 |
+
else:
|
109 |
+
with open('/sys/module/intel_vpu/parameters/test_mode', 'r') as tm_file:
|
110 |
+
test_mode = int(tm_file.readline().split()[0])
|
111 |
+
if test_mode == 512:
|
112 |
+
print_npu_turbo_art()
|
113 |
+
else:
|
114 |
+
print("The driver >=intel_vpu-1.9.0 was must be loaded with "
|
115 |
+
"\"modprobe intel_vpu test_mode=512\" to enable NPU_TURBO "
|
116 |
+
f"(currently test_mode={test_mode}). Skipping...")
|
117 |
+
else:
|
118 |
+
print(f"The driver >=intel_vpu-1.9.0 must be loaded with \"modprobe intel_vpu test_mode=512\" to enable NPU_TURBO. Skipping...")
|
119 |
+
else:
|
120 |
+
print(f"This platform ({platform.system()}) does not support NPU Turbo")
|
121 |
+
|
122 |
+
def result(var):
|
123 |
+
return next(iter(var.values()))
|
124 |
+
|
125 |
+
class StableDiffusionEngineAdvanced(DiffusionPipeline):
|
126 |
+
def __init__(self, model="runwayml/stable-diffusion-v1-5",
|
127 |
+
tokenizer="openai/clip-vit-large-patch14",
|
128 |
+
device=["CPU", "CPU", "CPU", "CPU"]):
|
129 |
+
try:
|
130 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True)
|
131 |
+
except:
|
132 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer)
|
133 |
+
self.tokenizer.save_pretrained(model)
|
134 |
+
|
135 |
+
self.core = Core()
|
136 |
+
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')})
|
137 |
+
try_enable_npu_turbo(device, self.core)
|
138 |
+
|
139 |
+
print("Loading models... ")
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
|
144 |
+
futures = {
|
145 |
+
"unet_time_proj": executor.submit(self.core.compile_model, os.path.join(model, "unet_time_proj.xml"), device[0]),
|
146 |
+
"text": executor.submit(self.load_model, model, "text_encoder", device[0]),
|
147 |
+
"unet": executor.submit(self.load_model, model, "unet_int8", device[1]),
|
148 |
+
"unet_neg": executor.submit(self.load_model, model, "unet_int8", device[2]) if device[1] != device[2] else None,
|
149 |
+
"vae_decoder": executor.submit(self.load_model, model, "vae_decoder", device[3]),
|
150 |
+
"vae_encoder": executor.submit(self.load_model, model, "vae_encoder", device[3])
|
151 |
+
}
|
152 |
+
|
153 |
+
self.unet_time_proj = futures["unet_time_proj"].result()
|
154 |
+
self.text_encoder = futures["text"].result()
|
155 |
+
self.unet = futures["unet"].result()
|
156 |
+
self.unet_neg = futures["unet_neg"].result() if futures["unet_neg"] else self.unet
|
157 |
+
self.vae_decoder = futures["vae_decoder"].result()
|
158 |
+
self.vae_encoder = futures["vae_encoder"].result()
|
159 |
+
print("Text Device:", device[0])
|
160 |
+
print("unet Device:", device[1])
|
161 |
+
print("unet-neg Device:", device[2])
|
162 |
+
print("VAE Device:", device[3])
|
163 |
+
|
164 |
+
self._text_encoder_output = self.text_encoder.output(0)
|
165 |
+
self._vae_d_output = self.vae_decoder.output(0)
|
166 |
+
self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder else None
|
167 |
+
|
168 |
+
self.set_dimensions()
|
169 |
+
self.infer_request_neg = self.unet_neg.create_infer_request()
|
170 |
+
self.infer_request = self.unet.create_infer_request()
|
171 |
+
self.infer_request_time_proj = self.unet_time_proj.create_infer_request()
|
172 |
+
self.time_proj_constants = np.load(os.path.join(model, "time_proj_constants.npy"))
|
173 |
+
|
174 |
+
def load_model(self, model, model_name, device):
|
175 |
+
if "NPU" in device:
|
176 |
+
with open(os.path.join(model, f"{model_name}.blob"), "rb") as f:
|
177 |
+
return self.core.import_model(f.read(), device)
|
178 |
+
return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device)
|
179 |
+
|
180 |
+
def set_dimensions(self):
|
181 |
+
latent_shape = self.unet.input("latent_model_input").shape
|
182 |
+
if latent_shape[1] == 4:
|
183 |
+
self.height = latent_shape[2] * 8
|
184 |
+
self.width = latent_shape[3] * 8
|
185 |
+
else:
|
186 |
+
self.height = latent_shape[1] * 8
|
187 |
+
self.width = latent_shape[2] * 8
|
188 |
+
|
189 |
+
def __call__(
|
190 |
+
self,
|
191 |
+
prompt,
|
192 |
+
init_image = None,
|
193 |
+
negative_prompt=None,
|
194 |
+
scheduler=None,
|
195 |
+
strength = 0.5,
|
196 |
+
num_inference_steps = 32,
|
197 |
+
guidance_scale = 7.5,
|
198 |
+
eta = 0.0,
|
199 |
+
create_gif = False,
|
200 |
+
model = None,
|
201 |
+
callback = None,
|
202 |
+
callback_userdata = None
|
203 |
+
):
|
204 |
+
|
205 |
+
# extract condition
|
206 |
+
text_input = self.tokenizer(
|
207 |
+
prompt,
|
208 |
+
padding="max_length",
|
209 |
+
max_length=self.tokenizer.model_max_length,
|
210 |
+
truncation=True,
|
211 |
+
return_tensors="np",
|
212 |
+
)
|
213 |
+
text_embeddings = self.text_encoder(text_input.input_ids)[self._text_encoder_output]
|
214 |
+
|
215 |
+
# do classifier free guidance
|
216 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
217 |
+
if do_classifier_free_guidance:
|
218 |
+
|
219 |
+
if negative_prompt is None:
|
220 |
+
uncond_tokens = [""]
|
221 |
+
elif isinstance(negative_prompt, str):
|
222 |
+
uncond_tokens = [negative_prompt]
|
223 |
+
else:
|
224 |
+
uncond_tokens = negative_prompt
|
225 |
+
|
226 |
+
tokens_uncond = self.tokenizer(
|
227 |
+
uncond_tokens,
|
228 |
+
padding="max_length",
|
229 |
+
max_length=self.tokenizer.model_max_length, #truncation=True,
|
230 |
+
return_tensors="np"
|
231 |
+
)
|
232 |
+
uncond_embeddings = self.text_encoder(tokens_uncond.input_ids)[self._text_encoder_output]
|
233 |
+
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
234 |
+
|
235 |
+
# set timesteps
|
236 |
+
accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
237 |
+
extra_set_kwargs = {}
|
238 |
+
|
239 |
+
if accepts_offset:
|
240 |
+
extra_set_kwargs["offset"] = 1
|
241 |
+
|
242 |
+
scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
243 |
+
|
244 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler)
|
245 |
+
latent_timestep = timesteps[:1]
|
246 |
+
|
247 |
+
# get the initial random noise unless the user supplied it
|
248 |
+
latents, meta = self.prepare_latents(init_image, latent_timestep, scheduler)
|
249 |
+
|
250 |
+
|
251 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
252 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
253 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
254 |
+
# and should be between [0, 1]
|
255 |
+
accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys())
|
256 |
+
extra_step_kwargs = {}
|
257 |
+
if accepts_eta:
|
258 |
+
extra_step_kwargs["eta"] = eta
|
259 |
+
if create_gif:
|
260 |
+
frames = []
|
261 |
+
|
262 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
263 |
+
if callback:
|
264 |
+
callback(i, callback_userdata)
|
265 |
+
|
266 |
+
# expand the latents if we are doing classifier free guidance
|
267 |
+
noise_pred = []
|
268 |
+
latent_model_input = latents
|
269 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
270 |
+
|
271 |
+
latent_model_input_neg = latent_model_input
|
272 |
+
if self.unet.input("latent_model_input").shape[1] != 4:
|
273 |
+
#print("In transpose")
|
274 |
+
try:
|
275 |
+
latent_model_input = latent_model_input.permute(0,2,3,1)
|
276 |
+
except:
|
277 |
+
latent_model_input = latent_model_input.transpose(0,2,3,1)
|
278 |
+
|
279 |
+
if self.unet_neg.input("latent_model_input").shape[1] != 4:
|
280 |
+
#print("In transpose")
|
281 |
+
try:
|
282 |
+
latent_model_input_neg = latent_model_input_neg.permute(0,2,3,1)
|
283 |
+
except:
|
284 |
+
latent_model_input_neg = latent_model_input_neg.transpose(0,2,3,1)
|
285 |
+
|
286 |
+
|
287 |
+
time_proj_constants_fp16 = np.float16(self.time_proj_constants)
|
288 |
+
t_scaled_fp16 = time_proj_constants_fp16 * np.float16(t)
|
289 |
+
cosine_t_fp16 = np.cos(t_scaled_fp16)
|
290 |
+
sine_t_fp16 = np.sin(t_scaled_fp16)
|
291 |
+
|
292 |
+
t_scaled = self.time_proj_constants * np.float32(t)
|
293 |
+
|
294 |
+
cosine_t = np.cos(t_scaled)
|
295 |
+
sine_t = np.sin(t_scaled)
|
296 |
+
|
297 |
+
time_proj_dict = {"sine_t" : np.float32(sine_t), "cosine_t" : np.float32(cosine_t)}
|
298 |
+
self.infer_request_time_proj.start_async(time_proj_dict)
|
299 |
+
self.infer_request_time_proj.wait()
|
300 |
+
time_proj = self.infer_request_time_proj.get_output_tensor(0).data.astype(np.float32)
|
301 |
+
|
302 |
+
input_tens_neg_dict = {"time_proj": np.float32(time_proj), "latent_model_input":latent_model_input_neg, "encoder_hidden_states": np.expand_dims(text_embeddings[0], axis=0)}
|
303 |
+
input_tens_dict = {"time_proj": np.float32(time_proj), "latent_model_input":latent_model_input, "encoder_hidden_states": np.expand_dims(text_embeddings[1], axis=0)}
|
304 |
+
|
305 |
+
self.infer_request_neg.start_async(input_tens_neg_dict)
|
306 |
+
self.infer_request.start_async(input_tens_dict)
|
307 |
+
self.infer_request_neg.wait()
|
308 |
+
self.infer_request.wait()
|
309 |
+
|
310 |
+
noise_pred_neg = self.infer_request_neg.get_output_tensor(0)
|
311 |
+
noise_pred_pos = self.infer_request.get_output_tensor(0)
|
312 |
+
|
313 |
+
noise_pred.append(noise_pred_neg.data.astype(np.float32))
|
314 |
+
noise_pred.append(noise_pred_pos.data.astype(np.float32))
|
315 |
+
|
316 |
+
# perform guidance
|
317 |
+
if do_classifier_free_guidance:
|
318 |
+
noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]
|
319 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
320 |
+
|
321 |
+
# compute the previous noisy sample x_t -> x_t-1
|
322 |
+
latents = scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy()
|
323 |
+
|
324 |
+
if create_gif:
|
325 |
+
frames.append(latents)
|
326 |
+
|
327 |
+
if callback:
|
328 |
+
callback(num_inference_steps, callback_userdata)
|
329 |
+
|
330 |
+
# scale and decode the image latents with vae
|
331 |
+
latents = 1 / 0.18215 * latents
|
332 |
+
|
333 |
+
start = time.time()
|
334 |
+
image = self.vae_decoder(latents)[self._vae_d_output]
|
335 |
+
print("Decoder ended:",time.time() - start)
|
336 |
+
|
337 |
+
image = self.postprocess_image(image, meta)
|
338 |
+
|
339 |
+
if create_gif:
|
340 |
+
gif_folder=os.path.join(model,"../../../gif")
|
341 |
+
print("gif_folder:",gif_folder)
|
342 |
+
if not os.path.exists(gif_folder):
|
343 |
+
os.makedirs(gif_folder)
|
344 |
+
for i in range(0,len(frames)):
|
345 |
+
image = self.vae_decoder(frames[i]*(1/0.18215))[self._vae_d_output]
|
346 |
+
image = self.postprocess_image(image, meta)
|
347 |
+
output = gif_folder + "/" + str(i).zfill(3) +".png"
|
348 |
+
cv2.imwrite(output, image)
|
349 |
+
with open(os.path.join(gif_folder, "prompt.json"), "w") as file:
|
350 |
+
json.dump({"prompt": prompt}, file)
|
351 |
+
frames_image = [Image.open(image) for image in glob.glob(f"{gif_folder}/*.png")]
|
352 |
+
frame_one = frames_image[0]
|
353 |
+
gif_file=os.path.join(gif_folder,"stable_diffusion.gif")
|
354 |
+
frame_one.save(gif_file, format="GIF", append_images=frames_image, save_all=True, duration=100, loop=0)
|
355 |
+
|
356 |
+
return image
|
357 |
+
|
358 |
+
def prepare_latents(self, image:PIL.Image.Image = None, latent_timestep:torch.Tensor = None, scheduler = LMSDiscreteScheduler):
|
359 |
+
"""
|
360 |
+
Function for getting initial latents for starting generation
|
361 |
+
|
362 |
+
Parameters:
|
363 |
+
image (PIL.Image.Image, *optional*, None):
|
364 |
+
Input image for generation, if not provided randon noise will be used as starting point
|
365 |
+
latent_timestep (torch.Tensor, *optional*, None):
|
366 |
+
Predicted by scheduler initial step for image generation, required for latent image mixing with nosie
|
367 |
+
Returns:
|
368 |
+
latents (np.ndarray):
|
369 |
+
Image encoded in latent space
|
370 |
+
"""
|
371 |
+
latents_shape = (1, 4, self.height // 8, self.width // 8)
|
372 |
+
|
373 |
+
noise = np.random.randn(*latents_shape).astype(np.float32)
|
374 |
+
if image is None:
|
375 |
+
##print("Image is NONE")
|
376 |
+
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
|
377 |
+
if isinstance(scheduler, LMSDiscreteScheduler):
|
378 |
+
|
379 |
+
noise = noise * scheduler.sigmas[0].numpy()
|
380 |
+
return noise, {}
|
381 |
+
elif isinstance(scheduler, EulerDiscreteScheduler) or isinstance(scheduler,EulerAncestralDiscreteScheduler):
|
382 |
+
|
383 |
+
noise = noise * scheduler.sigmas.max().numpy()
|
384 |
+
return noise, {}
|
385 |
+
else:
|
386 |
+
return noise, {}
|
387 |
+
input_image, meta = preprocess(image,self.height,self.width)
|
388 |
+
|
389 |
+
moments = self.vae_encoder(input_image)[self._vae_e_output]
|
390 |
+
|
391 |
+
mean, logvar = np.split(moments, 2, axis=1)
|
392 |
+
|
393 |
+
std = np.exp(logvar * 0.5)
|
394 |
+
latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215
|
395 |
+
|
396 |
+
|
397 |
+
latents = scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy()
|
398 |
+
return latents, meta
|
399 |
+
|
400 |
+
def postprocess_image(self, image:np.ndarray, meta:Dict):
|
401 |
+
"""
|
402 |
+
Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initial image size (if required),
|
403 |
+
normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format
|
404 |
+
|
405 |
+
Parameters:
|
406 |
+
image (np.ndarray):
|
407 |
+
Generated image
|
408 |
+
meta (Dict):
|
409 |
+
Metadata obtained on latents preparing step, can be empty
|
410 |
+
output_type (str, *optional*, pil):
|
411 |
+
Output format for result, can be pil or numpy
|
412 |
+
Returns:
|
413 |
+
image (List of np.ndarray or PIL.Image.Image):
|
414 |
+
Postprocessed images
|
415 |
+
|
416 |
+
if "src_height" in meta:
|
417 |
+
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
418 |
+
image = [cv2.resize(img, (orig_width, orig_height))
|
419 |
+
for img in image]
|
420 |
+
|
421 |
+
return image
|
422 |
+
"""
|
423 |
+
if "padding" in meta:
|
424 |
+
pad = meta["padding"]
|
425 |
+
(_, end_h), (_, end_w) = pad[1:3]
|
426 |
+
h, w = image.shape[2:]
|
427 |
+
#print("image shape",image.shape[2:])
|
428 |
+
unpad_h = h - end_h
|
429 |
+
unpad_w = w - end_w
|
430 |
+
image = image[:, :, :unpad_h, :unpad_w]
|
431 |
+
image = np.clip(image / 2 + 0.5, 0, 1)
|
432 |
+
image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8)
|
433 |
+
|
434 |
+
|
435 |
+
|
436 |
+
if "src_height" in meta:
|
437 |
+
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
438 |
+
image = cv2.resize(image, (orig_width, orig_height))
|
439 |
+
|
440 |
+
return image
|
441 |
+
|
442 |
+
|
443 |
+
|
444 |
+
|
445 |
+
def get_timesteps(self, num_inference_steps:int, strength:float, scheduler):
|
446 |
+
"""
|
447 |
+
Helper function for getting scheduler timesteps for generation
|
448 |
+
In case of image-to-image generation, it updates number of steps according to strength
|
449 |
+
|
450 |
+
Parameters:
|
451 |
+
num_inference_steps (int):
|
452 |
+
number of inference steps for generation
|
453 |
+
strength (float):
|
454 |
+
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
|
455 |
+
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
|
456 |
+
"""
|
457 |
+
# get the original timestep using init_timestep
|
458 |
+
|
459 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
460 |
+
|
461 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
462 |
+
timesteps = scheduler.timesteps[t_start:]
|
463 |
+
|
464 |
+
return timesteps, num_inference_steps - t_start
|
465 |
+
|
466 |
+
class StableDiffusionEngine(DiffusionPipeline):
|
467 |
+
def __init__(
|
468 |
+
self,
|
469 |
+
model="bes-dev/stable-diffusion-v1-4-openvino",
|
470 |
+
tokenizer="openai/clip-vit-large-patch14",
|
471 |
+
device=["CPU","CPU","CPU","CPU"]):
|
472 |
+
|
473 |
+
self.core = Core()
|
474 |
+
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')})
|
475 |
+
|
476 |
+
self.batch_size = 2 if device[1] == device[2] and device[1] == "GPU" else 1
|
477 |
+
try_enable_npu_turbo(device, self.core)
|
478 |
+
|
479 |
+
try:
|
480 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True)
|
481 |
+
except Exception as e:
|
482 |
+
print("Local tokenizer not found. Attempting to download...")
|
483 |
+
self.tokenizer = self.download_tokenizer(tokenizer, model)
|
484 |
+
|
485 |
+
print("Loading models... ")
|
486 |
+
|
487 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
|
488 |
+
text_future = executor.submit(self.load_model, model, "text_encoder", device[0])
|
489 |
+
vae_de_future = executor.submit(self.load_model, model, "vae_decoder", device[3])
|
490 |
+
vae_en_future = executor.submit(self.load_model, model, "vae_encoder", device[3])
|
491 |
+
|
492 |
+
if self.batch_size == 1:
|
493 |
+
if "int8" not in model:
|
494 |
+
unet_future = executor.submit(self.load_model, model, "unet_bs1", device[1])
|
495 |
+
unet_neg_future = executor.submit(self.load_model, model, "unet_bs1", device[2]) if device[1] != device[2] else None
|
496 |
+
else:
|
497 |
+
unet_future = executor.submit(self.load_model, model, "unet_int8a16", device[1])
|
498 |
+
unet_neg_future = executor.submit(self.load_model, model, "unet_int8a16", device[2]) if device[1] != device[2] else None
|
499 |
+
else:
|
500 |
+
unet_future = executor.submit(self.load_model, model, "unet", device[1])
|
501 |
+
unet_neg_future = None
|
502 |
+
|
503 |
+
self.unet = unet_future.result()
|
504 |
+
self.unet_neg = unet_neg_future.result() if unet_neg_future else self.unet
|
505 |
+
self.text_encoder = text_future.result()
|
506 |
+
self.vae_decoder = vae_de_future.result()
|
507 |
+
self.vae_encoder = vae_en_future.result()
|
508 |
+
print("Text Device:", device[0])
|
509 |
+
print("unet Device:", device[1])
|
510 |
+
print("unet-neg Device:", device[2])
|
511 |
+
print("VAE Device:", device[3])
|
512 |
+
|
513 |
+
self._text_encoder_output = self.text_encoder.output(0)
|
514 |
+
self._unet_output = self.unet.output(0)
|
515 |
+
self._vae_d_output = self.vae_decoder.output(0)
|
516 |
+
self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder else None
|
517 |
+
|
518 |
+
self.unet_input_tensor_name = "sample" if 'sample' in self.unet.input(0).names else "latent_model_input"
|
519 |
+
|
520 |
+
if self.batch_size == 1:
|
521 |
+
self.infer_request = self.unet.create_infer_request()
|
522 |
+
self.infer_request_neg = self.unet_neg.create_infer_request()
|
523 |
+
self._unet_neg_output = self.unet_neg.output(0)
|
524 |
+
else:
|
525 |
+
self.infer_request = None
|
526 |
+
self.infer_request_neg = None
|
527 |
+
self._unet_neg_output = None
|
528 |
+
|
529 |
+
self.set_dimensions()
|
530 |
+
|
531 |
+
|
532 |
+
|
533 |
+
def load_model(self, model, model_name, device):
|
534 |
+
if "NPU" in device:
|
535 |
+
with open(os.path.join(model, f"{model_name}.blob"), "rb") as f:
|
536 |
+
return self.core.import_model(f.read(), device)
|
537 |
+
return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device)
|
538 |
+
|
539 |
+
def set_dimensions(self):
|
540 |
+
latent_shape = self.unet.input(self.unet_input_tensor_name).shape
|
541 |
+
if latent_shape[1] == 4:
|
542 |
+
self.height = latent_shape[2] * 8
|
543 |
+
self.width = latent_shape[3] * 8
|
544 |
+
else:
|
545 |
+
self.height = latent_shape[1] * 8
|
546 |
+
self.width = latent_shape[2] * 8
|
547 |
+
|
548 |
+
def __call__(
|
549 |
+
self,
|
550 |
+
prompt,
|
551 |
+
init_image=None,
|
552 |
+
negative_prompt=None,
|
553 |
+
scheduler=None,
|
554 |
+
strength=0.5,
|
555 |
+
num_inference_steps=32,
|
556 |
+
guidance_scale=7.5,
|
557 |
+
eta=0.0,
|
558 |
+
create_gif=False,
|
559 |
+
model=None,
|
560 |
+
callback=None,
|
561 |
+
callback_userdata=None
|
562 |
+
):
|
563 |
+
# extract condition
|
564 |
+
text_input = self.tokenizer(
|
565 |
+
prompt,
|
566 |
+
padding="max_length",
|
567 |
+
max_length=self.tokenizer.model_max_length,
|
568 |
+
truncation=True,
|
569 |
+
return_tensors="np",
|
570 |
+
)
|
571 |
+
text_embeddings = self.text_encoder(text_input.input_ids)[self._text_encoder_output]
|
572 |
+
|
573 |
+
|
574 |
+
# do classifier free guidance
|
575 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
576 |
+
if do_classifier_free_guidance:
|
577 |
+
if negative_prompt is None:
|
578 |
+
uncond_tokens = [""]
|
579 |
+
elif isinstance(negative_prompt, str):
|
580 |
+
uncond_tokens = [negative_prompt]
|
581 |
+
else:
|
582 |
+
uncond_tokens = negative_prompt
|
583 |
+
|
584 |
+
tokens_uncond = self.tokenizer(
|
585 |
+
uncond_tokens,
|
586 |
+
padding="max_length",
|
587 |
+
max_length=self.tokenizer.model_max_length, # truncation=True,
|
588 |
+
return_tensors="np"
|
589 |
+
)
|
590 |
+
uncond_embeddings = self.text_encoder(tokens_uncond.input_ids)[self._text_encoder_output]
|
591 |
+
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
592 |
+
|
593 |
+
# set timesteps
|
594 |
+
accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
595 |
+
extra_set_kwargs = {}
|
596 |
+
|
597 |
+
if accepts_offset:
|
598 |
+
extra_set_kwargs["offset"] = 1
|
599 |
+
|
600 |
+
scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
601 |
+
|
602 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler)
|
603 |
+
latent_timestep = timesteps[:1]
|
604 |
+
|
605 |
+
# get the initial random noise unless the user supplied it
|
606 |
+
latents, meta = self.prepare_latents(init_image, latent_timestep, scheduler,model)
|
607 |
+
|
608 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
609 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
610 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
611 |
+
# and should be between [0, 1]
|
612 |
+
accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys())
|
613 |
+
extra_step_kwargs = {}
|
614 |
+
if accepts_eta:
|
615 |
+
extra_step_kwargs["eta"] = eta
|
616 |
+
if create_gif:
|
617 |
+
frames = []
|
618 |
+
|
619 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
620 |
+
if callback:
|
621 |
+
callback(i, callback_userdata)
|
622 |
+
|
623 |
+
if self.batch_size == 1:
|
624 |
+
# expand the latents if we are doing classifier free guidance
|
625 |
+
noise_pred = []
|
626 |
+
latent_model_input = latents
|
627 |
+
|
628 |
+
#Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
629 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
630 |
+
latent_model_input_pos = latent_model_input
|
631 |
+
latent_model_input_neg = latent_model_input
|
632 |
+
|
633 |
+
if self.unet.input(self.unet_input_tensor_name).shape[1] != 4:
|
634 |
+
try:
|
635 |
+
latent_model_input_pos = latent_model_input_pos.permute(0,2,3,1)
|
636 |
+
except:
|
637 |
+
latent_model_input_pos = latent_model_input_pos.transpose(0,2,3,1)
|
638 |
+
|
639 |
+
if self.unet_neg.input(self.unet_input_tensor_name).shape[1] != 4:
|
640 |
+
try:
|
641 |
+
latent_model_input_neg = latent_model_input_neg.permute(0,2,3,1)
|
642 |
+
except:
|
643 |
+
latent_model_input_neg = latent_model_input_neg.transpose(0,2,3,1)
|
644 |
+
|
645 |
+
if "sample" in self.unet_input_tensor_name:
|
646 |
+
input_tens_neg_dict = {"sample" : latent_model_input_neg, "encoder_hidden_states": np.expand_dims(text_embeddings[0], axis=0), "timestep": np.expand_dims(np.float32(t), axis=0)}
|
647 |
+
input_tens_pos_dict = {"sample" : latent_model_input_pos, "encoder_hidden_states": np.expand_dims(text_embeddings[1], axis=0), "timestep": np.expand_dims(np.float32(t), axis=0)}
|
648 |
+
else:
|
649 |
+
input_tens_neg_dict = {"latent_model_input" : latent_model_input_neg, "encoder_hidden_states": np.expand_dims(text_embeddings[0], axis=0), "t": np.expand_dims(np.float32(t), axis=0)}
|
650 |
+
input_tens_pos_dict = {"latent_model_input" : latent_model_input_pos, "encoder_hidden_states": np.expand_dims(text_embeddings[1], axis=0), "t": np.expand_dims(np.float32(t), axis=0)}
|
651 |
+
|
652 |
+
self.infer_request_neg.start_async(input_tens_neg_dict)
|
653 |
+
self.infer_request.start_async(input_tens_pos_dict)
|
654 |
+
|
655 |
+
self.infer_request_neg.wait()
|
656 |
+
self.infer_request.wait()
|
657 |
+
|
658 |
+
noise_pred_neg = self.infer_request_neg.get_output_tensor(0)
|
659 |
+
noise_pred_pos = self.infer_request.get_output_tensor(0)
|
660 |
+
|
661 |
+
noise_pred.append(noise_pred_neg.data.astype(np.float32))
|
662 |
+
noise_pred.append(noise_pred_pos.data.astype(np.float32))
|
663 |
+
else:
|
664 |
+
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
665 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
666 |
+
noise_pred = self.unet([latent_model_input, np.array(t, dtype=np.float32), text_embeddings])[self._unet_output]
|
667 |
+
|
668 |
+
if do_classifier_free_guidance:
|
669 |
+
noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]
|
670 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
671 |
+
|
672 |
+
# compute the previous noisy sample x_t -> x_t-1
|
673 |
+
latents = scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy()
|
674 |
+
|
675 |
+
if create_gif:
|
676 |
+
frames.append(latents)
|
677 |
+
|
678 |
+
if callback:
|
679 |
+
callback(num_inference_steps, callback_userdata)
|
680 |
+
|
681 |
+
# scale and decode the image latents with vae
|
682 |
+
#if self.height == 512 and self.width == 512:
|
683 |
+
latents = 1 / 0.18215 * latents
|
684 |
+
image = self.vae_decoder(latents)[self._vae_d_output]
|
685 |
+
image = self.postprocess_image(image, meta)
|
686 |
+
|
687 |
+
return image
|
688 |
+
|
689 |
+
def prepare_latents(self, image: PIL.Image.Image = None, latent_timestep: torch.Tensor = None,
|
690 |
+
scheduler=LMSDiscreteScheduler,model=None):
|
691 |
+
"""
|
692 |
+
Function for getting initial latents for starting generation
|
693 |
+
|
694 |
+
Parameters:
|
695 |
+
image (PIL.Image.Image, *optional*, None):
|
696 |
+
Input image for generation, if not provided randon noise will be used as starting point
|
697 |
+
latent_timestep (torch.Tensor, *optional*, None):
|
698 |
+
Predicted by scheduler initial step for image generation, required for latent image mixing with nosie
|
699 |
+
Returns:
|
700 |
+
latents (np.ndarray):
|
701 |
+
Image encoded in latent space
|
702 |
+
"""
|
703 |
+
latents_shape = (1, 4, self.height // 8, self.width // 8)
|
704 |
+
|
705 |
+
noise = np.random.randn(*latents_shape).astype(np.float32)
|
706 |
+
if image is None:
|
707 |
+
#print("Image is NONE")
|
708 |
+
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
|
709 |
+
if isinstance(scheduler, LMSDiscreteScheduler):
|
710 |
+
|
711 |
+
noise = noise * scheduler.sigmas[0].numpy()
|
712 |
+
return noise, {}
|
713 |
+
elif isinstance(scheduler, EulerDiscreteScheduler):
|
714 |
+
|
715 |
+
noise = noise * scheduler.sigmas.max().numpy()
|
716 |
+
return noise, {}
|
717 |
+
else:
|
718 |
+
return noise, {}
|
719 |
+
input_image, meta = preprocess(image, self.height, self.width)
|
720 |
+
|
721 |
+
moments = self.vae_encoder(input_image)[self._vae_e_output]
|
722 |
+
|
723 |
+
if "sd_2.1" in model:
|
724 |
+
latents = moments * 0.18215
|
725 |
+
|
726 |
+
else:
|
727 |
+
|
728 |
+
mean, logvar = np.split(moments, 2, axis=1)
|
729 |
+
|
730 |
+
std = np.exp(logvar * 0.5)
|
731 |
+
latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215
|
732 |
+
|
733 |
+
latents = scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy()
|
734 |
+
return latents, meta
|
735 |
+
|
736 |
+
|
737 |
+
def postprocess_image(self, image: np.ndarray, meta: Dict):
|
738 |
+
"""
|
739 |
+
Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required),
|
740 |
+
normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format
|
741 |
+
|
742 |
+
Parameters:
|
743 |
+
image (np.ndarray):
|
744 |
+
Generated image
|
745 |
+
meta (Dict):
|
746 |
+
Metadata obtained on latents preparing step, can be empty
|
747 |
+
output_type (str, *optional*, pil):
|
748 |
+
Output format for result, can be pil or numpy
|
749 |
+
Returns:
|
750 |
+
image (List of np.ndarray or PIL.Image.Image):
|
751 |
+
Postprocessed images
|
752 |
+
|
753 |
+
if "src_height" in meta:
|
754 |
+
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
755 |
+
image = [cv2.resize(img, (orig_width, orig_height))
|
756 |
+
for img in image]
|
757 |
+
|
758 |
+
return image
|
759 |
+
"""
|
760 |
+
if "padding" in meta:
|
761 |
+
pad = meta["padding"]
|
762 |
+
(_, end_h), (_, end_w) = pad[1:3]
|
763 |
+
h, w = image.shape[2:]
|
764 |
+
# print("image shape",image.shape[2:])
|
765 |
+
unpad_h = h - end_h
|
766 |
+
unpad_w = w - end_w
|
767 |
+
image = image[:, :, :unpad_h, :unpad_w]
|
768 |
+
image = np.clip(image / 2 + 0.5, 0, 1)
|
769 |
+
image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8)
|
770 |
+
|
771 |
+
if "src_height" in meta:
|
772 |
+
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
773 |
+
image = cv2.resize(image, (orig_width, orig_height))
|
774 |
+
|
775 |
+
return image
|
776 |
+
|
777 |
+
# image = (image / 2 + 0.5).clip(0, 1)
|
778 |
+
# image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8)
|
779 |
+
|
780 |
+
def get_timesteps(self, num_inference_steps: int, strength: float, scheduler):
|
781 |
+
"""
|
782 |
+
Helper function for getting scheduler timesteps for generation
|
783 |
+
In case of image-to-image generation, it updates number of steps according to strength
|
784 |
+
|
785 |
+
Parameters:
|
786 |
+
num_inference_steps (int):
|
787 |
+
number of inference steps for generation
|
788 |
+
strength (float):
|
789 |
+
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
|
790 |
+
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
|
791 |
+
"""
|
792 |
+
# get the original timestep using init_timestep
|
793 |
+
|
794 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
795 |
+
|
796 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
797 |
+
timesteps = scheduler.timesteps[t_start:]
|
798 |
+
|
799 |
+
return timesteps, num_inference_steps - t_start
|
800 |
+
|
801 |
+
class LatentConsistencyEngine(DiffusionPipeline):
|
802 |
+
def __init__(
|
803 |
+
self,
|
804 |
+
model="SimianLuo/LCM_Dreamshaper_v7",
|
805 |
+
tokenizer="openai/clip-vit-large-patch14",
|
806 |
+
device=["CPU", "CPU", "CPU"],
|
807 |
+
):
|
808 |
+
super().__init__()
|
809 |
+
try:
|
810 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True)
|
811 |
+
except:
|
812 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer)
|
813 |
+
self.tokenizer.save_pretrained(model)
|
814 |
+
|
815 |
+
self.core = Core()
|
816 |
+
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) # adding caching to reduce init time
|
817 |
+
try_enable_npu_turbo(device, self.core)
|
818 |
+
|
819 |
+
|
820 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
|
821 |
+
text_future = executor.submit(self.load_model, model, "text_encoder", device[0])
|
822 |
+
unet_future = executor.submit(self.load_model, model, "unet", device[1])
|
823 |
+
vae_de_future = executor.submit(self.load_model, model, "vae_decoder", device[2])
|
824 |
+
|
825 |
+
print("Text Device:", device[0])
|
826 |
+
self.text_encoder = text_future.result()
|
827 |
+
self._text_encoder_output = self.text_encoder.output(0)
|
828 |
+
|
829 |
+
print("Unet Device:", device[1])
|
830 |
+
self.unet = unet_future.result()
|
831 |
+
self._unet_output = self.unet.output(0)
|
832 |
+
self.infer_request = self.unet.create_infer_request()
|
833 |
+
|
834 |
+
print(f"VAE Device: {device[2]}")
|
835 |
+
self.vae_decoder = vae_de_future.result()
|
836 |
+
self.infer_request_vae = self.vae_decoder.create_infer_request()
|
837 |
+
self.safety_checker = None #pipe.safety_checker
|
838 |
+
self.feature_extractor = None #pipe.feature_extractor
|
839 |
+
self.vae_scale_factor = 2 ** 3
|
840 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
841 |
+
|
842 |
+
def load_model(self, model, model_name, device):
|
843 |
+
if "NPU" in device:
|
844 |
+
with open(os.path.join(model, f"{model_name}.blob"), "rb") as f:
|
845 |
+
return self.core.import_model(f.read(), device)
|
846 |
+
return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device)
|
847 |
+
|
848 |
+
def _encode_prompt(
|
849 |
+
self,
|
850 |
+
prompt,
|
851 |
+
num_images_per_prompt,
|
852 |
+
prompt_embeds: None,
|
853 |
+
):
|
854 |
+
r"""
|
855 |
+
Encodes the prompt into text encoder hidden states.
|
856 |
+
Args:
|
857 |
+
prompt (`str` or `List[str]`, *optional*):
|
858 |
+
prompt to be encoded
|
859 |
+
num_images_per_prompt (`int`):
|
860 |
+
number of images that should be generated per prompt
|
861 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
862 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
863 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
864 |
+
"""
|
865 |
+
|
866 |
+
if prompt_embeds is None:
|
867 |
+
|
868 |
+
text_inputs = self.tokenizer(
|
869 |
+
prompt,
|
870 |
+
padding="max_length",
|
871 |
+
max_length=self.tokenizer.model_max_length,
|
872 |
+
truncation=True,
|
873 |
+
return_tensors="pt",
|
874 |
+
)
|
875 |
+
text_input_ids = text_inputs.input_ids
|
876 |
+
untruncated_ids = self.tokenizer(
|
877 |
+
prompt, padding="longest", return_tensors="pt"
|
878 |
+
).input_ids
|
879 |
+
|
880 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
881 |
+
-1
|
882 |
+
] and not torch.equal(text_input_ids, untruncated_ids):
|
883 |
+
removed_text = self.tokenizer.batch_decode(
|
884 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
885 |
+
)
|
886 |
+
logger.warning(
|
887 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
888 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
889 |
+
)
|
890 |
+
|
891 |
+
prompt_embeds = self.text_encoder(text_input_ids, share_inputs=True, share_outputs=True)
|
892 |
+
prompt_embeds = torch.from_numpy(prompt_embeds[0])
|
893 |
+
|
894 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
895 |
+
# duplicate text embeddings for each generation per prompt
|
896 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
897 |
+
prompt_embeds = prompt_embeds.view(
|
898 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
899 |
+
)
|
900 |
+
|
901 |
+
# Don't need to get uncond prompt embedding because of LCM Guided Distillation
|
902 |
+
return prompt_embeds
|
903 |
+
|
904 |
+
def run_safety_checker(self, image, dtype):
|
905 |
+
if self.safety_checker is None:
|
906 |
+
has_nsfw_concept = None
|
907 |
+
else:
|
908 |
+
if torch.is_tensor(image):
|
909 |
+
feature_extractor_input = self.image_processor.postprocess(
|
910 |
+
image, output_type="pil"
|
911 |
+
)
|
912 |
+
else:
|
913 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
914 |
+
safety_checker_input = self.feature_extractor(
|
915 |
+
feature_extractor_input, return_tensors="pt"
|
916 |
+
)
|
917 |
+
image, has_nsfw_concept = self.safety_checker(
|
918 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
919 |
+
)
|
920 |
+
return image, has_nsfw_concept
|
921 |
+
|
922 |
+
def prepare_latents(
|
923 |
+
self, batch_size, num_channels_latents, height, width, dtype, latents=None
|
924 |
+
):
|
925 |
+
shape = (
|
926 |
+
batch_size,
|
927 |
+
num_channels_latents,
|
928 |
+
height // self.vae_scale_factor,
|
929 |
+
width // self.vae_scale_factor,
|
930 |
+
)
|
931 |
+
if latents is None:
|
932 |
+
latents = torch.randn(shape, dtype=dtype)
|
933 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
934 |
+
return latents
|
935 |
+
|
936 |
+
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
937 |
+
"""
|
938 |
+
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
939 |
+
Args:
|
940 |
+
timesteps: torch.Tensor: generate embedding vectors at these timesteps
|
941 |
+
embedding_dim: int: dimension of the embeddings to generate
|
942 |
+
dtype: data type of the generated embeddings
|
943 |
+
Returns:
|
944 |
+
embedding vectors with shape `(len(timesteps), embedding_dim)`
|
945 |
+
"""
|
946 |
+
assert len(w.shape) == 1
|
947 |
+
w = w * 1000.0
|
948 |
+
|
949 |
+
half_dim = embedding_dim // 2
|
950 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
951 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
952 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
953 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
954 |
+
if embedding_dim % 2 == 1: # zero pad
|
955 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
956 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
957 |
+
return emb
|
958 |
+
|
959 |
+
@torch.no_grad()
|
960 |
+
def __call__(
|
961 |
+
self,
|
962 |
+
prompt: Union[str, List[str]] = None,
|
963 |
+
height: Optional[int] = 512,
|
964 |
+
width: Optional[int] = 512,
|
965 |
+
guidance_scale: float = 7.5,
|
966 |
+
scheduler = None,
|
967 |
+
num_images_per_prompt: Optional[int] = 1,
|
968 |
+
latents: Optional[torch.FloatTensor] = None,
|
969 |
+
num_inference_steps: int = 4,
|
970 |
+
lcm_origin_steps: int = 50,
|
971 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
972 |
+
output_type: Optional[str] = "pil",
|
973 |
+
return_dict: bool = True,
|
974 |
+
model: Optional[Dict[str, any]] = None,
|
975 |
+
seed: Optional[int] = 1234567,
|
976 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
977 |
+
callback = None,
|
978 |
+
callback_userdata = None
|
979 |
+
):
|
980 |
+
|
981 |
+
# 1. Define call parameters
|
982 |
+
if prompt is not None and isinstance(prompt, str):
|
983 |
+
batch_size = 1
|
984 |
+
elif prompt is not None and isinstance(prompt, list):
|
985 |
+
batch_size = len(prompt)
|
986 |
+
else:
|
987 |
+
batch_size = prompt_embeds.shape[0]
|
988 |
+
|
989 |
+
if seed is not None:
|
990 |
+
torch.manual_seed(seed)
|
991 |
+
|
992 |
+
#print("After Step 1: batch size is ", batch_size)
|
993 |
+
# do_classifier_free_guidance = guidance_scale > 0.0
|
994 |
+
# In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
|
995 |
+
|
996 |
+
# 2. Encode input prompt
|
997 |
+
prompt_embeds = self._encode_prompt(
|
998 |
+
prompt,
|
999 |
+
num_images_per_prompt,
|
1000 |
+
prompt_embeds=prompt_embeds,
|
1001 |
+
)
|
1002 |
+
#print("After Step 2: prompt embeds is ", prompt_embeds)
|
1003 |
+
#print("After Step 2: scheduler is ", scheduler )
|
1004 |
+
# 3. Prepare timesteps
|
1005 |
+
scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps)
|
1006 |
+
timesteps = scheduler.timesteps
|
1007 |
+
|
1008 |
+
#print("After Step 3: timesteps is ", timesteps)
|
1009 |
+
|
1010 |
+
# 4. Prepare latent variable
|
1011 |
+
num_channels_latents = 4
|
1012 |
+
latents = self.prepare_latents(
|
1013 |
+
batch_size * num_images_per_prompt,
|
1014 |
+
num_channels_latents,
|
1015 |
+
height,
|
1016 |
+
width,
|
1017 |
+
prompt_embeds.dtype,
|
1018 |
+
latents,
|
1019 |
+
)
|
1020 |
+
latents = latents * scheduler.init_noise_sigma
|
1021 |
+
|
1022 |
+
#print("After Step 4: ")
|
1023 |
+
bs = batch_size * num_images_per_prompt
|
1024 |
+
|
1025 |
+
# 5. Get Guidance Scale Embedding
|
1026 |
+
w = torch.tensor(guidance_scale).repeat(bs)
|
1027 |
+
w_embedding = self.get_w_embedding(w, embedding_dim=256)
|
1028 |
+
#print("After Step 5: ")
|
1029 |
+
# 6. LCM MultiStep Sampling Loop:
|
1030 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1031 |
+
for i, t in enumerate(timesteps):
|
1032 |
+
if callback:
|
1033 |
+
callback(i+1, callback_userdata)
|
1034 |
+
|
1035 |
+
ts = torch.full((bs,), t, dtype=torch.long)
|
1036 |
+
|
1037 |
+
# model prediction (v-prediction, eps, x)
|
1038 |
+
model_pred = self.unet([latents, ts, prompt_embeds, w_embedding],share_inputs=True, share_outputs=True)[0]
|
1039 |
+
|
1040 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1041 |
+
latents, denoised = scheduler.step(
|
1042 |
+
torch.from_numpy(model_pred), t, latents, return_dict=False
|
1043 |
+
)
|
1044 |
+
progress_bar.update()
|
1045 |
+
|
1046 |
+
#print("After Step 6: ")
|
1047 |
+
|
1048 |
+
vae_start = time.time()
|
1049 |
+
|
1050 |
+
if not output_type == "latent":
|
1051 |
+
image = torch.from_numpy(self.vae_decoder(denoised / 0.18215, share_inputs=True, share_outputs=True)[0])
|
1052 |
+
else:
|
1053 |
+
image = denoised
|
1054 |
+
|
1055 |
+
print("Decoder Ended: ", time.time() - vae_start)
|
1056 |
+
#post_start = time.time()
|
1057 |
+
|
1058 |
+
#if has_nsfw_concept is None:
|
1059 |
+
do_denormalize = [True] * image.shape[0]
|
1060 |
+
#else:
|
1061 |
+
# do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1062 |
+
|
1063 |
+
#print ("After do_denormalize: image is ", image)
|
1064 |
+
|
1065 |
+
image = self.image_processor.postprocess(
|
1066 |
+
image, output_type=output_type, do_denormalize=do_denormalize
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
return image[0]
|
1070 |
+
|
1071 |
+
class LatentConsistencyEngineAdvanced(DiffusionPipeline):
|
1072 |
+
def __init__(
|
1073 |
+
self,
|
1074 |
+
model="SimianLuo/LCM_Dreamshaper_v7",
|
1075 |
+
tokenizer="openai/clip-vit-large-patch14",
|
1076 |
+
device=["CPU", "CPU", "CPU"],
|
1077 |
+
):
|
1078 |
+
super().__init__()
|
1079 |
+
try:
|
1080 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True)
|
1081 |
+
except:
|
1082 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer)
|
1083 |
+
self.tokenizer.save_pretrained(model)
|
1084 |
+
|
1085 |
+
self.core = Core()
|
1086 |
+
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) # adding caching to reduce init time
|
1087 |
+
#try_enable_npu_turbo(device, self.core)
|
1088 |
+
|
1089 |
+
|
1090 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
|
1091 |
+
text_future = executor.submit(self.load_model, model, "text_encoder", device[0])
|
1092 |
+
unet_future = executor.submit(self.load_model, model, "unet", device[1])
|
1093 |
+
vae_de_future = executor.submit(self.load_model, model, "vae_decoder", device[2])
|
1094 |
+
vae_encoder_future = executor.submit(self.load_model, model, "vae_encoder", device[2])
|
1095 |
+
|
1096 |
+
|
1097 |
+
print("Text Device:", device[0])
|
1098 |
+
self.text_encoder = text_future.result()
|
1099 |
+
self._text_encoder_output = self.text_encoder.output(0)
|
1100 |
+
|
1101 |
+
print("Unet Device:", device[1])
|
1102 |
+
self.unet = unet_future.result()
|
1103 |
+
self._unet_output = self.unet.output(0)
|
1104 |
+
self.infer_request = self.unet.create_infer_request()
|
1105 |
+
|
1106 |
+
print(f"VAE Device: {device[2]}")
|
1107 |
+
self.vae_decoder = vae_de_future.result()
|
1108 |
+
self.vae_encoder = vae_encoder_future.result()
|
1109 |
+
self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder else None
|
1110 |
+
|
1111 |
+
self.infer_request_vae = self.vae_decoder.create_infer_request()
|
1112 |
+
self.safety_checker = None #pipe.safety_checker
|
1113 |
+
self.feature_extractor = None #pipe.feature_extractor
|
1114 |
+
self.vae_scale_factor = 2 ** 3
|
1115 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
1116 |
+
|
1117 |
+
def load_model(self, model, model_name, device):
|
1118 |
+
print(f"Compiling the {model_name} to {device} ...")
|
1119 |
+
return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device)
|
1120 |
+
|
1121 |
+
def get_timesteps(self, num_inference_steps:int, strength:float, scheduler):
|
1122 |
+
"""
|
1123 |
+
Helper function for getting scheduler timesteps for generation
|
1124 |
+
In case of image-to-image generation, it updates number of steps according to strength
|
1125 |
+
|
1126 |
+
Parameters:
|
1127 |
+
num_inference_steps (int):
|
1128 |
+
number of inference steps for generation
|
1129 |
+
strength (float):
|
1130 |
+
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
|
1131 |
+
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
|
1132 |
+
"""
|
1133 |
+
# get the original timestep using init_timestep
|
1134 |
+
|
1135 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
1136 |
+
|
1137 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
1138 |
+
timesteps = scheduler.timesteps[t_start:]
|
1139 |
+
|
1140 |
+
return timesteps, num_inference_steps - t_start
|
1141 |
+
|
1142 |
+
def _encode_prompt(
|
1143 |
+
self,
|
1144 |
+
prompt,
|
1145 |
+
num_images_per_prompt,
|
1146 |
+
prompt_embeds: None,
|
1147 |
+
):
|
1148 |
+
r"""
|
1149 |
+
Encodes the prompt into text encoder hidden states.
|
1150 |
+
Args:
|
1151 |
+
prompt (`str` or `List[str]`, *optional*):
|
1152 |
+
prompt to be encoded
|
1153 |
+
num_images_per_prompt (`int`):
|
1154 |
+
number of images that should be generated per prompt
|
1155 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1156 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1157 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
1158 |
+
"""
|
1159 |
+
|
1160 |
+
if prompt_embeds is None:
|
1161 |
+
|
1162 |
+
text_inputs = self.tokenizer(
|
1163 |
+
prompt,
|
1164 |
+
padding="max_length",
|
1165 |
+
max_length=self.tokenizer.model_max_length,
|
1166 |
+
truncation=True,
|
1167 |
+
return_tensors="pt",
|
1168 |
+
)
|
1169 |
+
text_input_ids = text_inputs.input_ids
|
1170 |
+
untruncated_ids = self.tokenizer(
|
1171 |
+
prompt, padding="longest", return_tensors="pt"
|
1172 |
+
).input_ids
|
1173 |
+
|
1174 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
1175 |
+
-1
|
1176 |
+
] and not torch.equal(text_input_ids, untruncated_ids):
|
1177 |
+
removed_text = self.tokenizer.batch_decode(
|
1178 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
1179 |
+
)
|
1180 |
+
logger.warning(
|
1181 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
1182 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
prompt_embeds = self.text_encoder(text_input_ids, share_inputs=True, share_outputs=True)
|
1186 |
+
prompt_embeds = torch.from_numpy(prompt_embeds[0])
|
1187 |
+
|
1188 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
1189 |
+
# duplicate text embeddings for each generation per prompt
|
1190 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
1191 |
+
prompt_embeds = prompt_embeds.view(
|
1192 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
1193 |
+
)
|
1194 |
+
|
1195 |
+
# Don't need to get uncond prompt embedding because of LCM Guided Distillation
|
1196 |
+
return prompt_embeds
|
1197 |
+
|
1198 |
+
def run_safety_checker(self, image, dtype):
|
1199 |
+
if self.safety_checker is None:
|
1200 |
+
has_nsfw_concept = None
|
1201 |
+
else:
|
1202 |
+
if torch.is_tensor(image):
|
1203 |
+
feature_extractor_input = self.image_processor.postprocess(
|
1204 |
+
image, output_type="pil"
|
1205 |
+
)
|
1206 |
+
else:
|
1207 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
1208 |
+
safety_checker_input = self.feature_extractor(
|
1209 |
+
feature_extractor_input, return_tensors="pt"
|
1210 |
+
)
|
1211 |
+
image, has_nsfw_concept = self.safety_checker(
|
1212 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
1213 |
+
)
|
1214 |
+
return image, has_nsfw_concep
|
1215 |
+
|
1216 |
+
def prepare_latents(
|
1217 |
+
self,image,timestep,batch_size, num_channels_latents, height, width, dtype, scheduler,latents=None,
|
1218 |
+
):
|
1219 |
+
shape = (
|
1220 |
+
batch_size,
|
1221 |
+
num_channels_latents,
|
1222 |
+
height // self.vae_scale_factor,
|
1223 |
+
width // self.vae_scale_factor,
|
1224 |
+
)
|
1225 |
+
if image:
|
1226 |
+
#latents_shape = (1, 4, 512, 512 // 8)
|
1227 |
+
#input_image, meta = preprocess(image,512,512)
|
1228 |
+
latents_shape = (1, 4, 512 // 8, 512 // 8)
|
1229 |
+
noise = np.random.randn(*latents_shape).astype(np.float32)
|
1230 |
+
input_image,meta = preprocess(image,512,512)
|
1231 |
+
moments = self.vae_encoder(input_image)[self._vae_e_output]
|
1232 |
+
mean, logvar = np.split(moments, 2, axis=1)
|
1233 |
+
std = np.exp(logvar * 0.5)
|
1234 |
+
latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215
|
1235 |
+
noise = torch.randn(shape, dtype=dtype)
|
1236 |
+
#latents = scheduler.add_noise(init_latents, noise, timestep)
|
1237 |
+
latents = scheduler.add_noise(torch.from_numpy(latents), noise, timestep)
|
1238 |
+
|
1239 |
+
else:
|
1240 |
+
latents = torch.randn(shape, dtype=dtype)
|
1241 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
1242 |
+
return latents
|
1243 |
+
|
1244 |
+
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
1245 |
+
"""
|
1246 |
+
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
1247 |
+
Args:
|
1248 |
+
timesteps: torch.Tensor: generate embedding vectors at these timesteps
|
1249 |
+
embedding_dim: int: dimension of the embeddings to generate
|
1250 |
+
dtype: data type of the generated embeddings
|
1251 |
+
Returns:
|
1252 |
+
embedding vectors with shape `(len(timesteps), embedding_dim)`
|
1253 |
+
"""
|
1254 |
+
assert len(w.shape) == 1
|
1255 |
+
w = w * 1000.0
|
1256 |
+
|
1257 |
+
half_dim = embedding_dim // 2
|
1258 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
1259 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
1260 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
1261 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
1262 |
+
if embedding_dim % 2 == 1: # zero pad
|
1263 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
1264 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
1265 |
+
return emb
|
1266 |
+
|
1267 |
+
@torch.no_grad()
|
1268 |
+
def __call__(
|
1269 |
+
self,
|
1270 |
+
prompt: Union[str, List[str]] = None,
|
1271 |
+
init_image: Optional[PIL.Image.Image] = None,
|
1272 |
+
strength: Optional[float] = 0.8,
|
1273 |
+
height: Optional[int] = 512,
|
1274 |
+
width: Optional[int] = 512,
|
1275 |
+
guidance_scale: float = 7.5,
|
1276 |
+
scheduler = None,
|
1277 |
+
num_images_per_prompt: Optional[int] = 1,
|
1278 |
+
latents: Optional[torch.FloatTensor] = None,
|
1279 |
+
num_inference_steps: int = 4,
|
1280 |
+
lcm_origin_steps: int = 50,
|
1281 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1282 |
+
output_type: Optional[str] = "pil",
|
1283 |
+
return_dict: bool = True,
|
1284 |
+
model: Optional[Dict[str, any]] = None,
|
1285 |
+
seed: Optional[int] = 1234567,
|
1286 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1287 |
+
callback = None,
|
1288 |
+
callback_userdata = None
|
1289 |
+
):
|
1290 |
+
|
1291 |
+
# 1. Define call parameters
|
1292 |
+
if prompt is not None and isinstance(prompt, str):
|
1293 |
+
batch_size = 1
|
1294 |
+
elif prompt is not None and isinstance(prompt, list):
|
1295 |
+
batch_size = len(prompt)
|
1296 |
+
else:
|
1297 |
+
batch_size = prompt_embeds.shape[0]
|
1298 |
+
|
1299 |
+
if seed is not None:
|
1300 |
+
torch.manual_seed(seed)
|
1301 |
+
|
1302 |
+
#print("After Step 1: batch size is ", batch_size)
|
1303 |
+
# do_classifier_free_guidance = guidance_scale > 0.0
|
1304 |
+
# In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
|
1305 |
+
|
1306 |
+
# 2. Encode input prompt
|
1307 |
+
prompt_embeds = self._encode_prompt(
|
1308 |
+
prompt,
|
1309 |
+
num_images_per_prompt,
|
1310 |
+
prompt_embeds=prompt_embeds,
|
1311 |
+
)
|
1312 |
+
#print("After Step 2: prompt embeds is ", prompt_embeds)
|
1313 |
+
#print("After Step 2: scheduler is ", scheduler )
|
1314 |
+
# 3. Prepare timesteps
|
1315 |
+
#scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps)
|
1316 |
+
latent_timestep = None
|
1317 |
+
if init_image:
|
1318 |
+
scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps)
|
1319 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler)
|
1320 |
+
latent_timestep = timesteps[:1]
|
1321 |
+
else:
|
1322 |
+
scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps)
|
1323 |
+
timesteps = scheduler.timesteps
|
1324 |
+
#timesteps = scheduler.timesteps
|
1325 |
+
#latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1326 |
+
#print("timesteps: ", latent_timestep)
|
1327 |
+
|
1328 |
+
#print("After Step 3: timesteps is ", timesteps)
|
1329 |
+
|
1330 |
+
# 4. Prepare latent variable
|
1331 |
+
num_channels_latents = 4
|
1332 |
+
latents = self.prepare_latents(
|
1333 |
+
init_image,
|
1334 |
+
latent_timestep,
|
1335 |
+
batch_size * num_images_per_prompt,
|
1336 |
+
num_channels_latents,
|
1337 |
+
height,
|
1338 |
+
width,
|
1339 |
+
prompt_embeds.dtype,
|
1340 |
+
scheduler,
|
1341 |
+
latents,
|
1342 |
+
)
|
1343 |
+
|
1344 |
+
latents = latents * scheduler.init_noise_sigma
|
1345 |
+
|
1346 |
+
#print("After Step 4: ")
|
1347 |
+
bs = batch_size * num_images_per_prompt
|
1348 |
+
|
1349 |
+
# 5. Get Guidance Scale Embedding
|
1350 |
+
w = torch.tensor(guidance_scale).repeat(bs)
|
1351 |
+
w_embedding = self.get_w_embedding(w, embedding_dim=256)
|
1352 |
+
#print("After Step 5: ")
|
1353 |
+
# 6. LCM MultiStep Sampling Loop:
|
1354 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1355 |
+
for i, t in enumerate(timesteps):
|
1356 |
+
if callback:
|
1357 |
+
callback(i+1, callback_userdata)
|
1358 |
+
|
1359 |
+
ts = torch.full((bs,), t, dtype=torch.long)
|
1360 |
+
|
1361 |
+
# model prediction (v-prediction, eps, x)
|
1362 |
+
model_pred = self.unet([latents, ts, prompt_embeds, w_embedding],share_inputs=True, share_outputs=True)[0]
|
1363 |
+
|
1364 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1365 |
+
latents, denoised = scheduler.step(
|
1366 |
+
torch.from_numpy(model_pred), t, latents, return_dict=False
|
1367 |
+
)
|
1368 |
+
progress_bar.update()
|
1369 |
+
|
1370 |
+
#print("After Step 6: ")
|
1371 |
+
|
1372 |
+
vae_start = time.time()
|
1373 |
+
|
1374 |
+
if not output_type == "latent":
|
1375 |
+
image = torch.from_numpy(self.vae_decoder(denoised / 0.18215, share_inputs=True, share_outputs=True)[0])
|
1376 |
+
else:
|
1377 |
+
image = denoised
|
1378 |
+
|
1379 |
+
print("Decoder Ended: ", time.time() - vae_start)
|
1380 |
+
#post_start = time.time()
|
1381 |
+
|
1382 |
+
#if has_nsfw_concept is None:
|
1383 |
+
do_denormalize = [True] * image.shape[0]
|
1384 |
+
#else:
|
1385 |
+
# do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1386 |
+
|
1387 |
+
#print ("After do_denormalize: image is ", image)
|
1388 |
+
|
1389 |
+
image = self.image_processor.postprocess(
|
1390 |
+
image, output_type=output_type, do_denormalize=do_denormalize
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
return image[0]
|
1394 |
+
|
1395 |
+
class StableDiffusionEngineReferenceOnly(DiffusionPipeline):
|
1396 |
+
def __init__(
|
1397 |
+
self,
|
1398 |
+
#scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
1399 |
+
model="bes-dev/stable-diffusion-v1-4-openvino",
|
1400 |
+
tokenizer="openai/clip-vit-large-patch14",
|
1401 |
+
device=["CPU","CPU","CPU"]
|
1402 |
+
):
|
1403 |
+
#self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer)
|
1404 |
+
try:
|
1405 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(model,local_files_only=True)
|
1406 |
+
except:
|
1407 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer)
|
1408 |
+
self.tokenizer.save_pretrained(model)
|
1409 |
+
|
1410 |
+
#self.scheduler = scheduler
|
1411 |
+
# models
|
1412 |
+
|
1413 |
+
self.core = Core()
|
1414 |
+
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) #adding caching to reduce init time
|
1415 |
+
# text features
|
1416 |
+
|
1417 |
+
print("Text Device:",device[0])
|
1418 |
+
self.text_encoder = self.core.compile_model(os.path.join(model, "text_encoder.xml"), device[0])
|
1419 |
+
|
1420 |
+
self._text_encoder_output = self.text_encoder.output(0)
|
1421 |
+
|
1422 |
+
# diffusion
|
1423 |
+
print("unet_w Device:",device[1])
|
1424 |
+
self.unet_w = self.core.compile_model(os.path.join(model, "unet_reference_write.xml"), device[1])
|
1425 |
+
self._unet_w_output = self.unet_w.output(0)
|
1426 |
+
self.latent_shape = tuple(self.unet_w.inputs[0].shape)[1:]
|
1427 |
+
|
1428 |
+
print("unet_r Device:",device[1])
|
1429 |
+
self.unet_r = self.core.compile_model(os.path.join(model, "unet_reference_read.xml"), device[1])
|
1430 |
+
self._unet_r_output = self.unet_r.output(0)
|
1431 |
+
# decoder
|
1432 |
+
print("Vae Device:",device[2])
|
1433 |
+
|
1434 |
+
self.vae_decoder = self.core.compile_model(os.path.join(model, "vae_decoder.xml"), device[2])
|
1435 |
+
|
1436 |
+
# encoder
|
1437 |
+
|
1438 |
+
self.vae_encoder = self.core.compile_model(os.path.join(model, "vae_encoder.xml"), device[2])
|
1439 |
+
|
1440 |
+
self.init_image_shape = tuple(self.vae_encoder.inputs[0].shape)[2:]
|
1441 |
+
|
1442 |
+
self._vae_d_output = self.vae_decoder.output(0)
|
1443 |
+
self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder is not None else None
|
1444 |
+
|
1445 |
+
self.height = self.unet_w.input(0).shape[2] * 8
|
1446 |
+
self.width = self.unet_w.input(0).shape[3] * 8
|
1447 |
+
|
1448 |
+
|
1449 |
+
|
1450 |
+
def __call__(
|
1451 |
+
self,
|
1452 |
+
prompt,
|
1453 |
+
image = None,
|
1454 |
+
negative_prompt=None,
|
1455 |
+
scheduler=None,
|
1456 |
+
strength = 1.0,
|
1457 |
+
num_inference_steps = 32,
|
1458 |
+
guidance_scale = 7.5,
|
1459 |
+
eta = 0.0,
|
1460 |
+
create_gif = False,
|
1461 |
+
model = None,
|
1462 |
+
callback = None,
|
1463 |
+
callback_userdata = None
|
1464 |
+
):
|
1465 |
+
# extract condition
|
1466 |
+
text_input = self.tokenizer(
|
1467 |
+
prompt,
|
1468 |
+
padding="max_length",
|
1469 |
+
max_length=self.tokenizer.model_max_length,
|
1470 |
+
truncation=True,
|
1471 |
+
return_tensors="np",
|
1472 |
+
)
|
1473 |
+
text_embeddings = self.text_encoder(text_input.input_ids)[self._text_encoder_output]
|
1474 |
+
|
1475 |
+
|
1476 |
+
# do classifier free guidance
|
1477 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1478 |
+
if do_classifier_free_guidance:
|
1479 |
+
|
1480 |
+
if negative_prompt is None:
|
1481 |
+
uncond_tokens = [""]
|
1482 |
+
elif isinstance(negative_prompt, str):
|
1483 |
+
uncond_tokens = [negative_prompt]
|
1484 |
+
else:
|
1485 |
+
uncond_tokens = negative_prompt
|
1486 |
+
|
1487 |
+
tokens_uncond = self.tokenizer(
|
1488 |
+
uncond_tokens,
|
1489 |
+
padding="max_length",
|
1490 |
+
max_length=self.tokenizer.model_max_length, #truncation=True,
|
1491 |
+
return_tensors="np"
|
1492 |
+
)
|
1493 |
+
uncond_embeddings = self.text_encoder(tokens_uncond.input_ids)[self._text_encoder_output]
|
1494 |
+
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
1495 |
+
|
1496 |
+
# set timesteps
|
1497 |
+
accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
1498 |
+
extra_set_kwargs = {}
|
1499 |
+
|
1500 |
+
if accepts_offset:
|
1501 |
+
extra_set_kwargs["offset"] = 1
|
1502 |
+
|
1503 |
+
scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
1504 |
+
|
1505 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler)
|
1506 |
+
latent_timestep = timesteps[:1]
|
1507 |
+
|
1508 |
+
ref_image = self.prepare_image(
|
1509 |
+
image=image,
|
1510 |
+
width=512,
|
1511 |
+
height=512,
|
1512 |
+
)
|
1513 |
+
# get the initial random noise unless the user supplied it
|
1514 |
+
latents, meta = self.prepare_latents(None, latent_timestep, scheduler)
|
1515 |
+
#ref_image_latents, _ = self.prepare_latents(init_image, latent_timestep, scheduler)
|
1516 |
+
ref_image_latents = self.ov_prepare_ref_latents(ref_image)
|
1517 |
+
|
1518 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
1519 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
1520 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
1521 |
+
# and should be between [0, 1]
|
1522 |
+
accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys())
|
1523 |
+
extra_step_kwargs = {}
|
1524 |
+
if accepts_eta:
|
1525 |
+
extra_step_kwargs["eta"] = eta
|
1526 |
+
if create_gif:
|
1527 |
+
frames = []
|
1528 |
+
|
1529 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
1530 |
+
if callback:
|
1531 |
+
callback(i, callback_userdata)
|
1532 |
+
|
1533 |
+
# expand the latents if we are doing classifier free guidance
|
1534 |
+
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
1535 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
1536 |
+
|
1537 |
+
# ref only part
|
1538 |
+
noise = randn_tensor(
|
1539 |
+
ref_image_latents.shape
|
1540 |
+
)
|
1541 |
+
|
1542 |
+
ref_xt = scheduler.add_noise(
|
1543 |
+
torch.from_numpy(ref_image_latents),
|
1544 |
+
noise,
|
1545 |
+
t.reshape(
|
1546 |
+
1,
|
1547 |
+
),
|
1548 |
+
).numpy()
|
1549 |
+
ref_xt = np.concatenate([ref_xt] * 2) if do_classifier_free_guidance else ref_xt
|
1550 |
+
ref_xt = scheduler.scale_model_input(ref_xt, t)
|
1551 |
+
|
1552 |
+
# MODE = "write"
|
1553 |
+
result_w_dict = self.unet_w([
|
1554 |
+
ref_xt,
|
1555 |
+
t,
|
1556 |
+
text_embeddings
|
1557 |
+
])
|
1558 |
+
down_0_attn0 = result_w_dict["/unet/down_blocks.0/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1559 |
+
down_0_attn1 = result_w_dict["/unet/down_blocks.0/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1560 |
+
down_1_attn0 = result_w_dict["/unet/down_blocks.1/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1561 |
+
down_1_attn1 = result_w_dict["/unet/down_blocks.1/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1562 |
+
down_2_attn0 = result_w_dict["/unet/down_blocks.2/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1563 |
+
down_2_attn1 = result_w_dict["/unet/down_blocks.2/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1564 |
+
mid_attn0 = result_w_dict["/unet/mid_block/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1565 |
+
up_1_attn0 = result_w_dict["/unet/up_blocks.1/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1566 |
+
up_1_attn1 = result_w_dict["/unet/up_blocks.1/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1567 |
+
up_1_attn2 = result_w_dict["/unet/up_blocks.1/attentions.2/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1568 |
+
up_2_attn0 = result_w_dict["/unet/up_blocks.2/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1569 |
+
up_2_attn1 = result_w_dict["/unet/up_blocks.2/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1570 |
+
up_2_attn2 = result_w_dict["/unet/up_blocks.2/attentions.2/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1571 |
+
up_3_attn0 = result_w_dict["/unet/up_blocks.3/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1572 |
+
up_3_attn1 = result_w_dict["/unet/up_blocks.3/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1573 |
+
up_3_attn2 = result_w_dict["/unet/up_blocks.3/attentions.2/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
1574 |
+
|
1575 |
+
# MODE = "read"
|
1576 |
+
noise_pred = self.unet_r([
|
1577 |
+
latent_model_input, t, text_embeddings, down_0_attn0, down_0_attn1, down_1_attn0,
|
1578 |
+
down_1_attn1, down_2_attn0, down_2_attn1, mid_attn0, up_1_attn0, up_1_attn1, up_1_attn2,
|
1579 |
+
up_2_attn0, up_2_attn1, up_2_attn2, up_3_attn0, up_3_attn1, up_3_attn2
|
1580 |
+
])[0]
|
1581 |
+
|
1582 |
+
# perform guidance
|
1583 |
+
if do_classifier_free_guidance:
|
1584 |
+
noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]
|
1585 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1586 |
+
|
1587 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1588 |
+
latents = scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy()
|
1589 |
+
|
1590 |
+
if create_gif:
|
1591 |
+
frames.append(latents)
|
1592 |
+
|
1593 |
+
if callback:
|
1594 |
+
callback(num_inference_steps, callback_userdata)
|
1595 |
+
|
1596 |
+
# scale and decode the image latents with vae
|
1597 |
+
|
1598 |
+
image = self.vae_decoder(latents)[self._vae_d_output]
|
1599 |
+
|
1600 |
+
image = self.postprocess_image(image, meta)
|
1601 |
+
|
1602 |
+
if create_gif:
|
1603 |
+
gif_folder=os.path.join(model,"../../../gif")
|
1604 |
+
if not os.path.exists(gif_folder):
|
1605 |
+
os.makedirs(gif_folder)
|
1606 |
+
for i in range(0,len(frames)):
|
1607 |
+
image = self.vae_decoder(frames[i])[self._vae_d_output]
|
1608 |
+
image = self.postprocess_image(image, meta)
|
1609 |
+
output = gif_folder + "/" + str(i).zfill(3) +".png"
|
1610 |
+
cv2.imwrite(output, image)
|
1611 |
+
with open(os.path.join(gif_folder, "prompt.json"), "w") as file:
|
1612 |
+
json.dump({"prompt": prompt}, file)
|
1613 |
+
frames_image = [Image.open(image) for image in glob.glob(f"{gif_folder}/*.png")]
|
1614 |
+
frame_one = frames_image[0]
|
1615 |
+
gif_file=os.path.join(gif_folder,"stable_diffusion.gif")
|
1616 |
+
frame_one.save(gif_file, format="GIF", append_images=frames_image, save_all=True, duration=100, loop=0)
|
1617 |
+
|
1618 |
+
return image
|
1619 |
+
|
1620 |
+
def ov_prepare_ref_latents(self, refimage, vae_scaling_factor=0.18215):
|
1621 |
+
#refimage = refimage.to(device=device, dtype=dtype)
|
1622 |
+
|
1623 |
+
# encode the mask image into latents space so we can concatenate it to the latents
|
1624 |
+
moments = self.vae_encoder(refimage)[0]
|
1625 |
+
mean, logvar = np.split(moments, 2, axis=1)
|
1626 |
+
std = np.exp(logvar * 0.5)
|
1627 |
+
ref_image_latents = (mean + std * np.random.randn(*mean.shape))
|
1628 |
+
ref_image_latents = vae_scaling_factor * ref_image_latents
|
1629 |
+
#ref_image_latents = scheduler.add_noise(torch.from_numpy(ref_image_latents), torch.from_numpy(noise), latent_timestep).numpy()
|
1630 |
+
|
1631 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
1632 |
+
#ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
|
1633 |
+
return ref_image_latents
|
1634 |
+
|
1635 |
+
def prepare_latents(self, image:PIL.Image.Image = None, latent_timestep:torch.Tensor = None, scheduler = LMSDiscreteScheduler):
|
1636 |
+
"""
|
1637 |
+
Function for getting initial latents for starting generation
|
1638 |
+
|
1639 |
+
Parameters:
|
1640 |
+
image (PIL.Image.Image, *optional*, None):
|
1641 |
+
Input image for generation, if not provided randon noise will be used as starting point
|
1642 |
+
latent_timestep (torch.Tensor, *optional*, None):
|
1643 |
+
Predicted by scheduler initial step for image generation, required for latent image mixing with nosie
|
1644 |
+
Returns:
|
1645 |
+
latents (np.ndarray):
|
1646 |
+
Image encoded in latent space
|
1647 |
+
"""
|
1648 |
+
latents_shape = (1, 4, self.height // 8, self.width // 8)
|
1649 |
+
|
1650 |
+
noise = np.random.randn(*latents_shape).astype(np.float32)
|
1651 |
+
if image is None:
|
1652 |
+
#print("Image is NONE")
|
1653 |
+
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
|
1654 |
+
if isinstance(scheduler, LMSDiscreteScheduler):
|
1655 |
+
|
1656 |
+
noise = noise * scheduler.sigmas[0].numpy()
|
1657 |
+
return noise, {}
|
1658 |
+
elif isinstance(scheduler, EulerDiscreteScheduler):
|
1659 |
+
|
1660 |
+
noise = noise * scheduler.sigmas.max().numpy()
|
1661 |
+
return noise, {}
|
1662 |
+
else:
|
1663 |
+
return noise, {}
|
1664 |
+
input_image, meta = preprocess(image,self.height,self.width)
|
1665 |
+
|
1666 |
+
moments = self.vae_encoder(input_image)[self._vae_e_output]
|
1667 |
+
|
1668 |
+
mean, logvar = np.split(moments, 2, axis=1)
|
1669 |
+
|
1670 |
+
std = np.exp(logvar * 0.5)
|
1671 |
+
latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215
|
1672 |
+
|
1673 |
+
|
1674 |
+
latents = scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy()
|
1675 |
+
return latents, meta
|
1676 |
+
|
1677 |
+
def postprocess_image(self, image:np.ndarray, meta:Dict):
|
1678 |
+
"""
|
1679 |
+
Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required),
|
1680 |
+
normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format
|
1681 |
+
|
1682 |
+
Parameters:
|
1683 |
+
image (np.ndarray):
|
1684 |
+
Generated image
|
1685 |
+
meta (Dict):
|
1686 |
+
Metadata obtained on latents preparing step, can be empty
|
1687 |
+
output_type (str, *optional*, pil):
|
1688 |
+
Output format for result, can be pil or numpy
|
1689 |
+
Returns:
|
1690 |
+
image (List of np.ndarray or PIL.Image.Image):
|
1691 |
+
Postprocessed images
|
1692 |
+
|
1693 |
+
if "src_height" in meta:
|
1694 |
+
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
1695 |
+
image = [cv2.resize(img, (orig_width, orig_height))
|
1696 |
+
for img in image]
|
1697 |
+
|
1698 |
+
return image
|
1699 |
+
"""
|
1700 |
+
if "padding" in meta:
|
1701 |
+
pad = meta["padding"]
|
1702 |
+
(_, end_h), (_, end_w) = pad[1:3]
|
1703 |
+
h, w = image.shape[2:]
|
1704 |
+
#print("image shape",image.shape[2:])
|
1705 |
+
unpad_h = h - end_h
|
1706 |
+
unpad_w = w - end_w
|
1707 |
+
image = image[:, :, :unpad_h, :unpad_w]
|
1708 |
+
image = np.clip(image / 2 + 0.5, 0, 1)
|
1709 |
+
image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8)
|
1710 |
+
|
1711 |
+
|
1712 |
+
|
1713 |
+
if "src_height" in meta:
|
1714 |
+
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
1715 |
+
image = cv2.resize(image, (orig_width, orig_height))
|
1716 |
+
|
1717 |
+
return image
|
1718 |
+
|
1719 |
+
|
1720 |
+
#image = (image / 2 + 0.5).clip(0, 1)
|
1721 |
+
#image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8)
|
1722 |
+
|
1723 |
+
|
1724 |
+
def get_timesteps(self, num_inference_steps:int, strength:float, scheduler):
|
1725 |
+
"""
|
1726 |
+
Helper function for getting scheduler timesteps for generation
|
1727 |
+
In case of image-to-image generation, it updates number of steps according to strength
|
1728 |
+
|
1729 |
+
Parameters:
|
1730 |
+
num_inference_steps (int):
|
1731 |
+
number of inference steps for generation
|
1732 |
+
strength (float):
|
1733 |
+
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
|
1734 |
+
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
|
1735 |
+
"""
|
1736 |
+
# get the original timestep using init_timestep
|
1737 |
+
|
1738 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
1739 |
+
|
1740 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
1741 |
+
timesteps = scheduler.timesteps[t_start:]
|
1742 |
+
|
1743 |
+
return timesteps, num_inference_steps - t_start
|
1744 |
+
def prepare_image(
|
1745 |
+
self,
|
1746 |
+
image,
|
1747 |
+
width,
|
1748 |
+
height,
|
1749 |
+
do_classifier_free_guidance=False,
|
1750 |
+
guess_mode=False,
|
1751 |
+
):
|
1752 |
+
if not isinstance(image, np.ndarray):
|
1753 |
+
if isinstance(image, PIL.Image.Image):
|
1754 |
+
image = [image]
|
1755 |
+
|
1756 |
+
if isinstance(image[0], PIL.Image.Image):
|
1757 |
+
images = []
|
1758 |
+
|
1759 |
+
for image_ in image:
|
1760 |
+
image_ = image_.convert("RGB")
|
1761 |
+
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
1762 |
+
image_ = np.array(image_)
|
1763 |
+
image_ = image_[None, :]
|
1764 |
+
images.append(image_)
|
1765 |
+
|
1766 |
+
image = images
|
1767 |
+
|
1768 |
+
image = np.concatenate(image, axis=0)
|
1769 |
+
image = np.array(image).astype(np.float32) / 255.0
|
1770 |
+
image = (image - 0.5) / 0.5
|
1771 |
+
image = image.transpose(0, 3, 1, 2)
|
1772 |
+
elif isinstance(image[0], np.ndarray):
|
1773 |
+
image = np.concatenate(image, dim=0)
|
1774 |
+
|
1775 |
+
if do_classifier_free_guidance and not guess_mode:
|
1776 |
+
image = np.concatenate([image] * 2)
|
1777 |
+
|
1778 |
+
return image
|
1779 |
+
|
1780 |
+
def print_npu_turbo_art():
|
1781 |
+
random_number = random.randint(1, 3)
|
1782 |
+
|
1783 |
+
if random_number == 1:
|
1784 |
+
print(" ")
|
1785 |
+
print(" ___ ___ ___ ___ ___ ___ ")
|
1786 |
+
print(" /\ \ /\ \ /\ \ /\ \ /\ \ _____ /\ \ ")
|
1787 |
+
print(" \:\ \ /::\ \ \:\ \ ___ \:\ \ /::\ \ /::\ \ /::\ \ ")
|
1788 |
+
print(" \:\ \ /:/\:\__\ \:\ \ /\__\ \:\ \ /:/\:\__\ /:/\:\ \ /:/\:\ \ ")
|
1789 |
+
print(" _____\:\ \ /:/ /:/ / ___ \:\ \ /:/ / ___ \:\ \ /:/ /:/ / /:/ /::\__\ /:/ \:\ \ ")
|
1790 |
+
print(" /::::::::\__\ /:/_/:/ / /\ \ \:\__\ /:/__/ /\ \ \:\__\ /:/_/:/__/___ /:/_/:/\:|__| /:/__/ \:\__\ ")
|
1791 |
+
print(" \:\~~\~~\/__/ \:\/:/ / \:\ \ /:/ / /::\ \ \:\ \ /:/ / \:\/:::::/ / \:\/:/ /:/ / \:\ \ /:/ / ")
|
1792 |
+
print(" \:\ \ \::/__/ \:\ /:/ / /:/\:\ \ \:\ /:/ / \::/~~/~~~~ \::/_/:/ / \:\ /:/ / ")
|
1793 |
+
print(" \:\ \ \:\ \ \:\/:/ / \/__\:\ \ \:\/:/ / \:\~~\ \:\/:/ / \:\/:/ / ")
|
1794 |
+
print(" \:\__\ \:\__\ \::/ / \:\__\ \::/ / \:\__\ \::/ / \::/ / ")
|
1795 |
+
print(" \/__/ \/__/ \/__/ \/__/ \/__/ \/__/ \/__/ \/__/ ")
|
1796 |
+
print(" ")
|
1797 |
+
elif random_number == 2:
|
1798 |
+
print(" _ _ ____ _ _ _____ _ _ ____ ____ ___ ")
|
1799 |
+
print("| \ | | | _ \ | | | | |_ _| | | | | | _ \ | __ ) / _ \ ")
|
1800 |
+
print("| \| | | |_) | | | | | | | | | | | | |_) | | _ \ | | | |")
|
1801 |
+
print("| |\ | | __/ | |_| | | | | |_| | | _ < | |_) | | |_| |")
|
1802 |
+
print("|_| \_| |_| \___/ |_| \___/ |_| \_\ |____/ \___/ ")
|
1803 |
+
print(" ")
|
1804 |
+
else:
|
1805 |
+
print("")
|
1806 |
+
print(" ) ( ( ) ")
|
1807 |
+
print(" ( /( )\ ) * ) )\ ) ( ( /( ")
|
1808 |
+
print(" )\()) (()/( ( ` ) /( ( (()/( ( )\ )\()) ")
|
1809 |
+
print("((_)\ /(_)) )\ ( )(_)) )\ /(_)) )((_) ((_)\ ")
|
1810 |
+
print(" _((_) (_)) _ ((_) (_(_()) _ ((_) (_)) ((_)_ ((_) ")
|
1811 |
+
print("| \| | | _ \ | | | | |_ _| | | | | | _ \ | _ ) / _ \ ")
|
1812 |
+
print("| .` | | _/ | |_| | | | | |_| | | / | _ \ | (_) | ")
|
1813 |
+
print("|_|\_| |_| \___/ |_| \___/ |_|_\ |___/ \___/ ")
|
1814 |
+
print(" ")
|
1815 |
+
|
1816 |
+
|
1817 |
+
|