import spaces import gradio as gr from huggingface_hub import InferenceClient from torch import nn from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM from pathlib import Path import torch import torch.amp.autocast_mode from PIL import Image import os import gc device = "cuda" if torch.cuda.is_available() else "cpu" llm_models = { "Sao10K/Llama-3.1-8B-Stheno-v3.4": None, "unsloth/Meta-Llama-3.1-8B-bnb-4bit": None, "mergekit-community/L3.1-Boshima-b-FIX": None, "meta-llama/Meta-Llama-3.1-8B": None, } CLIP_PATH = "google/siglip-so400m-patch14-384" VLM_PROMPT = "A descriptive caption for this image:\n" MODEL_PATH = list(llm_models.keys())[0] CHECKPOINT_PATH = Path("wpkklhc6") TITLE = "

JoyCaption Pre-Alpha (2024-07-30a)

" HF_TOKEN = os.environ.get("HF_TOKEN", None) use_inference_client = False class ImageAdapter(nn.Module): def __init__(self, input_features: int, output_features: int): super().__init__() self.linear1 = nn.Linear(input_features, output_features) self.activation = nn.GELU() self.linear2 = nn.Linear(output_features, output_features) def forward(self, vision_outputs: torch.Tensor): x = self.linear1(vision_outputs) x = self.activation(x) x = self.linear2(x) return x # https://huggingface.co/docs/transformers/v4.44.2/gguf # https://github.com/city96/ComfyUI-GGUF/issues/7 # https://github.com/THUDM/ChatGLM-6B/issues/18 # https://github.com/meta-llama/llama/issues/394 # https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/discussions/109 # https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu # https://huggingface.co/google/flan-ul2/discussions/8 # https://huggingface.co/blog/4bit-transformers-bitsandbytes tokenizer = None text_model_client = None text_model = None image_adapter = None def load_text_model(model_name: str=MODEL_PATH, gguf_file: str | None=None, is_nf4: bool=True): global tokenizer global text_model global image_adapter global text_model_client # global use_inference_client # try: from transformers import BitsAndBytesConfig nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16) print("Loading tokenizer") if gguf_file: tokenizer = AutoTokenizer.from_pretrained(model_name, gguf_file=gguf_file, use_fast=True, legacy=False) else: tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, legacy=False) assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}" print(f"Loading LLM: {model_name}") if gguf_file: if device == "cpu": text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval() elif is_nf4: text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval() else: text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval() else: if device == "cpu": text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval() elif is_nf4: text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval() else: text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval() print("Loading image adapter") image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size).eval().to("cpu") image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True)) image_adapter.eval().to(device) except Exception as e: print(f"LLM load error: {e}") raise Exception(f"LLM load error: {e}") from e finally: torch.cuda.empty_cache() gc.collect() load_text_model.zerogpu = True # Load CLIP print("Loading CLIP") clip_processor = AutoProcessor.from_pretrained(CLIP_PATH) clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model.eval().requires_grad_(False).to(device) # Tokenizer # LLM # Image Adapter load_text_model() @spaces.GPU() @torch.no_grad() def stream_chat(input_image: Image.Image): torch.cuda.empty_cache() # Preprocess image image = clip_processor(images=input_image, return_tensors='pt').pixel_values image = image.to(device) # Tokenize the prompt prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False) # Embed image with torch.amp.autocast_mode.autocast(device, enabled=True): vision_outputs = clip_model(pixel_values=image, output_hidden_states=True) image_features = vision_outputs.hidden_states[-2] embedded_images = image_adapter(image_features) embedded_images = embedded_images.to(device) # Embed prompt prompt_embeds = text_model.model.embed_tokens(prompt.to(device)) assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}" embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)) # Construct prompts inputs_embeds = torch.cat([ embedded_bos.expand(embedded_images.shape[0], -1, -1), embedded_images.to(dtype=embedded_bos.dtype), prompt_embeds.expand(embedded_images.shape[0], -1, -1), ], dim=1) input_ids = torch.cat([ torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long), torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), prompt, ], dim=1).to(device) attention_mask = torch.ones_like(input_ids) #generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None) generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None) # Trim off the prompt generate_ids = generate_ids[:, input_ids.shape[1]:] if generate_ids[0][-1] == tokenizer.eos_token_id: generate_ids = generate_ids[:, :-1] caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] return caption.strip() @spaces.GPU() @torch.no_grad() def stream_chat_mod(input_image: Image.Image, max_new_tokens: int=300, top_k: int=10, temperature: float=0.5, progress=gr.Progress(track_tqdm=True)): global use_inference_client global text_model torch.cuda.empty_cache() gc.collect() # Preprocess image image = clip_processor(images=input_image, return_tensors='pt').pixel_values image = image.to(device) # Tokenize the prompt prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False) # Embed image with torch.amp.autocast_mode.autocast(device, enabled=True): vision_outputs = clip_model(pixel_values=image, output_hidden_states=True) image_features = vision_outputs.hidden_states[-2] embedded_images = image_adapter(image_features) embedded_images = embedded_images.to(device) # Embed prompt prompt_embeds = text_model.model.embed_tokens(prompt.to(device)) assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}" embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)) # Construct prompts inputs_embeds = torch.cat([ embedded_bos.expand(embedded_images.shape[0], -1, -1), embedded_images.to(dtype=embedded_bos.dtype), prompt_embeds.expand(embedded_images.shape[0], -1, -1), ], dim=1) input_ids = torch.cat([ torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long), torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), prompt, ], dim=1).to(device) attention_mask = torch.ones_like(input_ids) # https://huggingface.co/docs/transformers/v4.44.2/main_classes/text_generation#transformers.FlaxGenerationMixin.generate # https://github.com/huggingface/transformers/issues/6535 # https://zenn.dev/hijikix/articles/8c445f4373fdcc ja # https://github.com/ggerganov/llama.cpp/discussions/7712 # https://huggingface.co/docs/huggingface_hub/guides/inference#openai-compatibility # https://huggingface.co/docs/huggingface_hub/v0.24.6/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation #generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None) generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=max_new_tokens, do_sample=True, top_k=top_k, temperature=temperature, suppress_tokens=None) print(prompt) # Trim off the prompt generate_ids = generate_ids[:, input_ids.shape[1]:] if generate_ids[0][-1] == tokenizer.eos_token_id: generate_ids = generate_ids[:, :-1] caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] return caption.strip() def is_repo_name(s): import re return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s) def is_repo_exists(repo_id): from huggingface_hub import HfApi try: api = HfApi(token=HF_TOKEN) if api.repo_exists(repo_id=repo_id): return True else: return False except Exception as e: print(f"Error: Failed to connect {repo_id}.") print(e) return True # for safe def get_text_model(): return list(llm_models.keys()) def is_gguf_repo(repo_id: str): from huggingface_hub import HfApi try: api = HfApi(token=HF_TOKEN) if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return False files = api.list_repo_files(repo_id=repo_id) except Exception as e: print(f"Error: Failed to get {repo_id}'s info.") print(e) gr.Warning(f"Error: Failed to get {repo_id}'s info.") return False files = [f for f in files if f.endswith(".gguf")] if len(files) == 0: return False else: return True def get_repo_gguf(repo_id: str): from huggingface_hub import HfApi try: api = HfApi(token=HF_TOKEN) if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[]) files = api.list_repo_files(repo_id=repo_id) except Exception as e: print(f"Error: Failed to get {repo_id}'s info.") print(e) gr.Warning(f"Error: Failed to get {repo_id}'s info.") return gr.update(value="", choices=[]) files = [f for f in files if f.endswith(".gguf")] if len(files) == 0: return gr.update(value="", choices=[]) else: return gr.update(value=files[0], choices=files) @spaces.GPU() def change_text_model(model_name: str=MODEL_PATH, use_client: bool=False, gguf_file: str | None=None, is_nf4: bool=True, progress=gr.Progress(track_tqdm=True)): global use_inference_client global llm_models use_inference_client = use_client try: if not is_repo_name(model_name) or not is_repo_exists(model_name): raise gr.Error(f"Repo doesn't exist: {model_name}") if not gguf_file and is_gguf_repo(model_name): gr.Info(f"Please select a gguf file.") return gr.update(visible=True) if use_inference_client: pass # else: load_text_model(model_name, gguf_file, is_nf4) if model_name not in llm_models: llm_models[model_name] = gguf_file if gguf_file else None return gr.update(choices=get_text_model()) except Exception as e: raise gr.Error(f"Model load error: {model_name}, {e}") # original UI with gr.Blocks() as demo: gr.HTML(TITLE) with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Input Image") run_button = gr.Button("Caption") with gr.Column(): output_caption = gr.Textbox(label="Caption") run_button.click(fn=stream_chat, inputs=[input_image], outputs=[output_caption]) if __name__ == "__main__": demo.launch()