|
import spaces
|
|
import gradio as gr
|
|
from huggingface_hub import InferenceClient
|
|
from torch import nn
|
|
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
|
|
from pathlib import Path
|
|
import torch
|
|
import torch.amp.autocast_mode
|
|
from PIL import Image
|
|
import os
|
|
import gc
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
llm_models = {
|
|
"Sao10K/Llama-3.1-8B-Stheno-v3.4": None,
|
|
"unsloth/Meta-Llama-3.1-8B-bnb-4bit": None,
|
|
"mergekit-community/L3.1-Boshima-b-FIX": None,
|
|
"meta-llama/Meta-Llama-3.1-8B": None,
|
|
}
|
|
|
|
CLIP_PATH = "google/siglip-so400m-patch14-384"
|
|
VLM_PROMPT = "A descriptive caption for this image:\n"
|
|
MODEL_PATH = list(llm_models.keys())[0]
|
|
CHECKPOINT_PATH = Path("wpkklhc6")
|
|
TITLE = "<h1><center>JoyCaption Pre-Alpha (2024-07-30a)</center></h1>"
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
use_inference_client = False
|
|
|
|
class ImageAdapter(nn.Module):
|
|
def __init__(self, input_features: int, output_features: int):
|
|
super().__init__()
|
|
self.linear1 = nn.Linear(input_features, output_features)
|
|
self.activation = nn.GELU()
|
|
self.linear2 = nn.Linear(output_features, output_features)
|
|
|
|
def forward(self, vision_outputs: torch.Tensor):
|
|
x = self.linear1(vision_outputs)
|
|
x = self.activation(x)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer = None
|
|
text_model_client = None
|
|
text_model = None
|
|
image_adapter = None
|
|
def load_text_model(model_name: str=MODEL_PATH, gguf_file: str | None=None, is_nf4: bool=True):
|
|
global tokenizer
|
|
global text_model
|
|
global image_adapter
|
|
global text_model_client
|
|
global use_inference_client
|
|
try:
|
|
from transformers import BitsAndBytesConfig
|
|
nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4",
|
|
bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
|
print("Loading tokenizer")
|
|
if gguf_file: tokenizer = AutoTokenizer.from_pretrained(model_name, gguf_file=gguf_file, use_fast=True, legacy=False)
|
|
else: tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, legacy=False)
|
|
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
|
|
print(f"Loading LLM: {model_name}")
|
|
if gguf_file:
|
|
if device == "cpu": text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval()
|
|
elif is_nf4: text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()
|
|
else: text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
|
|
else:
|
|
if device == "cpu": text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval()
|
|
elif is_nf4: text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()
|
|
else: text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
|
|
print("Loading image adapter")
|
|
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size).eval().to("cpu")
|
|
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
|
|
image_adapter.eval().to(device)
|
|
except Exception as e:
|
|
print(f"LLM load error: {e}")
|
|
raise Exception(f"LLM load error: {e}") from e
|
|
finally:
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
load_text_model.zerogpu = True
|
|
|
|
|
|
print("Loading CLIP")
|
|
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
|
|
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model.eval().requires_grad_(False).to(device)
|
|
|
|
|
|
|
|
|
|
load_text_model()
|
|
|
|
@spaces.GPU()
|
|
@torch.no_grad()
|
|
def stream_chat(input_image: Image.Image):
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
image = clip_processor(images=input_image, return_tensors='pt').pixel_values
|
|
image = image.to(device)
|
|
|
|
|
|
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
|
|
|
|
|
|
with torch.amp.autocast_mode.autocast(device, enabled=True):
|
|
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
|
|
image_features = vision_outputs.hidden_states[-2]
|
|
embedded_images = image_adapter(image_features)
|
|
embedded_images = embedded_images.to(device)
|
|
|
|
|
|
prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
|
|
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
|
|
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
|
|
|
|
|
|
inputs_embeds = torch.cat([
|
|
embedded_bos.expand(embedded_images.shape[0], -1, -1),
|
|
embedded_images.to(dtype=embedded_bos.dtype),
|
|
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
|
|
], dim=1)
|
|
|
|
input_ids = torch.cat([
|
|
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
|
|
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
|
|
prompt,
|
|
], dim=1).to(device)
|
|
attention_mask = torch.ones_like(input_ids)
|
|
|
|
|
|
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
|
|
|
|
|
|
generate_ids = generate_ids[:, input_ids.shape[1]:]
|
|
if generate_ids[0][-1] == tokenizer.eos_token_id:
|
|
generate_ids = generate_ids[:, :-1]
|
|
|
|
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
|
|
|
|
return caption.strip()
|
|
|
|
|
|
@spaces.GPU()
|
|
@torch.no_grad()
|
|
def stream_chat_mod(input_image: Image.Image, max_new_tokens: int=300, top_k: int=10, temperature: float=0.5, progress=gr.Progress(track_tqdm=True)):
|
|
global use_inference_client
|
|
global text_model
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
|
|
image = clip_processor(images=input_image, return_tensors='pt').pixel_values
|
|
image = image.to(device)
|
|
|
|
|
|
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
|
|
|
|
|
|
with torch.amp.autocast_mode.autocast(device, enabled=True):
|
|
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
|
|
image_features = vision_outputs.hidden_states[-2]
|
|
embedded_images = image_adapter(image_features)
|
|
embedded_images = embedded_images.to(device)
|
|
|
|
|
|
prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
|
|
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
|
|
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
|
|
|
|
|
|
inputs_embeds = torch.cat([
|
|
embedded_bos.expand(embedded_images.shape[0], -1, -1),
|
|
embedded_images.to(dtype=embedded_bos.dtype),
|
|
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
|
|
], dim=1)
|
|
|
|
input_ids = torch.cat([
|
|
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
|
|
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
|
|
prompt,
|
|
], dim=1).to(device)
|
|
attention_mask = torch.ones_like(input_ids)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask,
|
|
max_new_tokens=max_new_tokens, do_sample=True, top_k=top_k, temperature=temperature, suppress_tokens=None)
|
|
|
|
print(prompt)
|
|
|
|
|
|
generate_ids = generate_ids[:, input_ids.shape[1]:]
|
|
if generate_ids[0][-1] == tokenizer.eos_token_id:
|
|
generate_ids = generate_ids[:, :-1]
|
|
|
|
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
|
|
|
|
return caption.strip()
|
|
|
|
|
|
def is_repo_name(s):
|
|
import re
|
|
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
|
|
|
|
|
def is_repo_exists(repo_id):
|
|
from huggingface_hub import HfApi
|
|
try:
|
|
api = HfApi(token=HF_TOKEN)
|
|
if api.repo_exists(repo_id=repo_id): return True
|
|
else: return False
|
|
except Exception as e:
|
|
print(f"Error: Failed to connect {repo_id}.")
|
|
print(e)
|
|
return True
|
|
|
|
|
|
def get_text_model():
|
|
return list(llm_models.keys())
|
|
|
|
|
|
def is_gguf_repo(repo_id: str):
|
|
from huggingface_hub import HfApi
|
|
try:
|
|
api = HfApi(token=HF_TOKEN)
|
|
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return False
|
|
files = api.list_repo_files(repo_id=repo_id)
|
|
except Exception as e:
|
|
print(f"Error: Failed to get {repo_id}'s info.")
|
|
print(e)
|
|
gr.Warning(f"Error: Failed to get {repo_id}'s info.")
|
|
return False
|
|
files = [f for f in files if f.endswith(".gguf")]
|
|
if len(files) == 0: return False
|
|
else: return True
|
|
|
|
|
|
def get_repo_gguf(repo_id: str):
|
|
from huggingface_hub import HfApi
|
|
try:
|
|
api = HfApi(token=HF_TOKEN)
|
|
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[])
|
|
files = api.list_repo_files(repo_id=repo_id)
|
|
except Exception as e:
|
|
print(f"Error: Failed to get {repo_id}'s info.")
|
|
print(e)
|
|
gr.Warning(f"Error: Failed to get {repo_id}'s info.")
|
|
return gr.update(value="", choices=[])
|
|
files = [f for f in files if f.endswith(".gguf")]
|
|
if len(files) == 0: return gr.update(value="", choices=[])
|
|
else: return gr.update(value=files[0], choices=files)
|
|
|
|
|
|
@spaces.GPU()
|
|
def change_text_model(model_name: str=MODEL_PATH, use_client: bool=False, gguf_file: str | None=None,
|
|
is_nf4: bool=True, progress=gr.Progress(track_tqdm=True)):
|
|
global use_inference_client
|
|
global llm_models
|
|
use_inference_client = use_client
|
|
try:
|
|
if not is_repo_name(model_name) or not is_repo_exists(model_name):
|
|
raise gr.Error(f"Repo doesn't exist: {model_name}")
|
|
if not gguf_file and is_gguf_repo(model_name):
|
|
gr.Info(f"Please select a gguf file.")
|
|
return gr.update(visible=True)
|
|
if use_inference_client:
|
|
pass
|
|
else:
|
|
load_text_model(model_name, gguf_file, is_nf4)
|
|
if model_name not in llm_models: llm_models[model_name] = gguf_file if gguf_file else None
|
|
return gr.update(choices=get_text_model())
|
|
except Exception as e:
|
|
raise gr.Error(f"Model load error: {model_name}, {e}")
|
|
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.HTML(TITLE)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_image = gr.Image(type="pil", label="Input Image")
|
|
run_button = gr.Button("Caption")
|
|
|
|
with gr.Column():
|
|
output_caption = gr.Textbox(label="Caption")
|
|
|
|
run_button.click(fn=stream_chat, inputs=[input_image], outputs=[output_caption])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch()
|
|
|