File size: 10,106 Bytes
1650be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import spaces
import gradio as gr
from huggingface_hub import InferenceClient
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from pathlib import Path
import torch
import torch.amp.autocast_mode
from PIL import Image
import os
import gc

device = "cuda" if torch.cuda.is_available() else "cpu"

llm_models = [
    "Sao10K/Llama-3.1-8B-Stheno-v3.4",
    "unsloth/Meta-Llama-3.1-8B-bnb-4bit",
    "mergekit-community/L3.1-Boshima-b-FIX",
    "meta-llama/Meta-Llama-3.1-8B",
]


CLIP_PATH = "google/siglip-so400m-patch14-384"
VLM_PROMPT = "A descriptive caption for this image:\n"
MODEL_PATH = llm_models[0]
CHECKPOINT_PATH = Path("wpkklhc6")
TITLE = "<h1><center>JoyCaption Pre-Alpha (2024-07-30a)</center></h1>"

HF_TOKEN = os.environ.get("HF_TOKEN", None)
use_inference_client = False

class ImageAdapter(nn.Module):
    def __init__(self, input_features: int, output_features: int):
        super().__init__()
        self.linear1 = nn.Linear(input_features, output_features)
        self.activation = nn.GELU()
        self.linear2 = nn.Linear(output_features, output_features)
    
    def forward(self, vision_outputs: torch.Tensor):
        x = self.linear1(vision_outputs)
        x = self.activation(x)
        x = self.linear2(x)
        return x

# https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
# https://huggingface.co/google/flan-ul2/discussions/8

text_model_client = None
text_model = None
image_adapter = None
def load_text_model(model_name: str=MODEL_PATH):
    global text_model
    global image_adapter
    global text_model_client
    global use_inference_client
    try:
        print(f"Loading LLM: {model_name}")
        if device == "cpu": text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
        else: text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
        print("Loading image adapter")
        image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size).eval().to("cpu")
        image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
        image_adapter.eval().to(device)
    except Exception as e:
        print(f"LLM load error: {e}")
        raise Exception(f"LLM load error: {e}") from e
    finally:
        torch.cuda.empty_cache()
        gc.collect()

load_text_model.zerogpu = True

# Load CLIP
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model.eval().requires_grad_(False).to(device)

# Tokenizer
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"

# LLM
# Image Adapter
load_text_model()

@spaces.GPU()
@torch.no_grad()
def stream_chat(input_image: Image.Image):
    torch.cuda.empty_cache()

    # Preprocess image
    image = clip_processor(images=input_image, return_tensors='pt').pixel_values
    image = image.to(device)

    # Tokenize the prompt
    prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)

    # Embed image
    with torch.amp.autocast_mode.autocast(device, enabled=True):
        vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
        image_features = vision_outputs.hidden_states[-2]
        embedded_images = image_adapter(image_features)
        embedded_images = embedded_images.to(device)
    
    # Embed prompt
    prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
    assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
    embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))

    # Construct prompts
    inputs_embeds = torch.cat([
        embedded_bos.expand(embedded_images.shape[0], -1, -1),
        embedded_images.to(dtype=embedded_bos.dtype),
        prompt_embeds.expand(embedded_images.shape[0], -1, -1),
    ], dim=1)

    input_ids = torch.cat([
        torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
        torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
        prompt,
    ], dim=1).to(device)
    attention_mask = torch.ones_like(input_ids)

    #generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
    generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)

    # Trim off the prompt
    generate_ids = generate_ids[:, input_ids.shape[1]:]
    if generate_ids[0][-1] == tokenizer.eos_token_id:
        generate_ids = generate_ids[:, :-1]

    caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]

    return caption.strip()


@spaces.GPU()
@torch.no_grad()
def stream_chat_mod(input_image: Image.Image, max_new_tokens: int=300, top_k: int=10, temperature: float=0.5, progress=gr.Progress(track_tqdm=True)):
    global use_inference_client
    global text_model
    torch.cuda.empty_cache()
    gc.collect()

    # Preprocess image
    image = clip_processor(images=input_image, return_tensors='pt').pixel_values
    image = image.to(device)

    # Tokenize the prompt
    prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)

    # Embed image
    with torch.amp.autocast_mode.autocast(device, enabled=True):
        vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
        image_features = vision_outputs.hidden_states[-2]
        embedded_images = image_adapter(image_features)
        embedded_images = embedded_images.to(device)
    
    # Embed prompt
    prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
    assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
    embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))

    # Construct prompts
    inputs_embeds = torch.cat([
        embedded_bos.expand(embedded_images.shape[0], -1, -1),
        embedded_images.to(dtype=embedded_bos.dtype),
        prompt_embeds.expand(embedded_images.shape[0], -1, -1),
    ], dim=1)

    input_ids = torch.cat([
        torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
        torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
        prompt,
    ], dim=1).to(device)
    attention_mask = torch.ones_like(input_ids)

    # https://huggingface.co/docs/huggingface_hub/guides/inference#openai-compatibility
    # https://huggingface.co/docs/huggingface_hub/v0.24.6/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation
    #generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
    generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask,
                                       max_new_tokens=max_new_tokens, do_sample=True, top_k=top_k, temperature=temperature, suppress_tokens=None)

    # Trim off the prompt
    generate_ids = generate_ids[:, input_ids.shape[1]:]
    if generate_ids[0][-1] == tokenizer.eos_token_id:
        generate_ids = generate_ids[:, :-1]

    caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]

    return caption.strip()


def is_repo_name(s):
    import re
    return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)


def is_repo_exists(repo_id):
    from huggingface_hub import HfApi
    api = HfApi()
    try:
        if api.repo_exists(repo_id=repo_id): return True
        else: return False
    except Exception as e:
        print(f"Error: Failed to connect {repo_id}.")
        print(e)
        return True # for safe


def get_text_model():
    return llm_models


@spaces.GPU()
def change_text_model(model_name: str=MODEL_PATH, use_client: bool=False, progress=gr.Progress(track_tqdm=True)):
    global use_inference_client
    global text_model
    global llm_models
    use_inference_client = use_client
    try:
        if not is_repo_name(model_name) or not is_repo_exists(model_name):
            raise gr.Error(f"Repo doesn't exist: {model_name}")
        if use_inference_client:
            pass
        else:
            load_text_model(model_name)
        if model_name not in llm_models: llm_models.append(model_name)
        return gr.update(visible=True)
    except Exception as e:
        raise gr.Error(f"Model load error: {model_name}, {e}")


# original UI
with gr.Blocks() as demo:
    gr.HTML(TITLE)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            run_button = gr.Button("Caption")
        
        with gr.Column():
            output_caption = gr.Textbox(label="Caption")
    
    run_button.click(fn=stream_chat, inputs=[input_image], outputs=[output_caption])


if __name__ == "__main__":
    demo.launch()