import os import json import subprocess from threading import Thread import torch import spaces import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) MODEL_ID = "infly/OpenCoder-8B-Instruct" CHAT_TEMPLATE = "ChatML" MODEL_NAME = MODEL_ID.split("/")[-1] CONTEXT_LENGTH = 1300 #EMOJI = os.environ.get("EMOJI") DESCRIPTION = "Infly OpenCoder-8B-Instruct" @spaces.GPU() def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): # Format history with a given chat template if CHAT_TEMPLATE == "ChatML": stop_tokens = ["<|endoftext|>", "<|im_end|>", "<|end_of_text|>", "<|eot_id|>", "assistant"] instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n' for human, assistant in history: instruction += '<|im_start|>user\n' + human + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n' elif CHAT_TEMPLATE == "Mistral Instruct": stop_tokens = ["", "[INST]", "[INST] ", "", "[/INST]", "[/INST] "] instruction = '[INST] ' + system_prompt for human, assistant in history: instruction += human + ' [/INST] ' + assistant + '[INST]' instruction += ' ' + message + ' [/INST]' else: raise Exception("Incorrect chat template, select 'ChatML' or 'Mistral Instruct'") print(instruction) streamer = TextIteratorStreamer(tokenizer, timeout=90.0, skip_prompt=True, skip_special_tokens=True) enc = tokenizer([instruction], return_tensors="pt", padding=True, truncation=True, max_length=CONTEXT_LENGTH) input_ids, attention_mask = enc.input_ids, enc.attention_mask if input_ids.shape[1] > CONTEXT_LENGTH: input_ids = input_ids[:, -CONTEXT_LENGTH:] generate_kwargs = dict( {"input_ids": input_ids.to(device), "attention_mask": attention_mask.to(device)}, streamer=streamer, do_sample=True, temperature=temperature, max_new_tokens=max_new_tokens, top_k=top_k, repetition_penalty=repetition_penalty, top_p=top_p ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for new_token in streamer: outputs.append(new_token) if new_token in stop_tokens: break yield "".join(outputs) def handle_retry(history, retry_data: gr.RetryData): new_history = history[:retry_data.index] previous_prompt = history[retry_data.index]['content'] yield from respond(previous_prompt, new_history) # Load model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_ID, device_map="auto", trust_remote_code=True ) css = """ .message-row { justify-content: space-evenly !important; } .message-bubble-border { border-radius: 6px !important; } .message-buttons-bot, .message-buttons-user { right: 10px !important; left: auto !important; bottom: 2px !important; } .dark.message-bubble-border { border-color: #15172c !important; } .dark.user { background: #10132c !important; } .dark.assistant.dark, .dark.pending.dark { background: #020417 !important; } """ # Create Gradio interface gr.ChatInterface( predict, title="Infly" + MODEL_NAME, description=DESCRIPTION, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False), additional_inputs=[ gr.Textbox("Perform the task to the best of your ability.", label="System prompt"), gr.Slider(0, 1, 0.8, label="Temperature"), gr.Slider(128, 4096, 512, label="Max new tokens"), gr.Slider(1, 80, 40, label="Top K sampling"), gr.Slider(0, 2, 1.1, label="Repetition penalty"), gr.Slider(0, 1, 0.95, label="Top P sampling"), ], theme = gr.themes.Ocean( secondary_hue="emerald", ), css=css, #retry_btn="Retry", #undo_btn="Undo", #clear_btn="Clear", #submit_btn="Send", chatbot=gr.Chatbot( scale=1, show_copy_button=True ), chatbot.retry(handle_retry, chatbot, [chatbot]) ).queue().launch()