File size: 3,510 Bytes
ef00dae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import math
import torch
from transformers import Adafactor

@torch.no_grad()
def adafactor_step_param(self, p, group):
    if p.grad is None:
        return
    grad = p.grad
    if grad.dtype in {torch.float16, torch.bfloat16}:
        grad = grad.float()
    if grad.is_sparse:
        raise RuntimeError("Adafactor does not support sparse gradients.")

    state = self.state[p]
    grad_shape = grad.shape

    factored, use_first_moment = Adafactor._get_options(group, grad_shape)
    # State Initialization
    if len(state) == 0:
        state["step"] = 0

        if use_first_moment:
            # Exponential moving average of gradient values
            state["exp_avg"] = torch.zeros_like(grad)
        if factored:
            state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
            state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad)
        else:
            state["exp_avg_sq"] = torch.zeros_like(grad)

        state["RMS"] = 0
    else:
        if use_first_moment:
            state["exp_avg"] = state["exp_avg"].to(grad)
        if factored:
            state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
            state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
        else:
            state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)

    p_data_fp32 = p
    if p.dtype in {torch.float16, torch.bfloat16}:
        p_data_fp32 = p_data_fp32.float()

    state["step"] += 1
    state["RMS"] = Adafactor._rms(p_data_fp32)
    lr = Adafactor._get_lr(group, state)

    beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
    update = (grad ** 2) + group["eps"][0]
    if factored:
        exp_avg_sq_row = state["exp_avg_sq_row"]
        exp_avg_sq_col = state["exp_avg_sq_col"]

        exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t))
        exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t))

        # Approximation of exponential moving average of square of gradient
        update = Adafactor._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
        update.mul_(grad)
    else:
        exp_avg_sq = state["exp_avg_sq"]

        exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
        update = exp_avg_sq.rsqrt().mul_(grad)

    update.div_((Adafactor._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
    update.mul_(lr)

    if use_first_moment:
        exp_avg = state["exp_avg"]
        exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"]))
        update = exp_avg

    if group["weight_decay"] != 0:
        p_data_fp32.add_(p_data_fp32, alpha=(-group["weight_decay"] * lr))

    p_data_fp32.add_(-update)

    if p.dtype in {torch.float16, torch.bfloat16}:
        p.copy_(p_data_fp32)


@torch.no_grad()
def adafactor_step(self, closure=None):
    """

    Performs a single optimization step



    Arguments:

        closure (callable, optional): A closure that reevaluates the model

            and returns the loss.

    """
    loss = None
    if closure is not None:
        loss = closure()

    for group in self.param_groups:
        for p in group["params"]:
            adafactor_step_param(self, p, group)

    return loss

def patch_adafactor_fused(optimizer: Adafactor):
    optimizer.step_param = adafactor_step_param.__get__(optimizer)
    optimizer.step = adafactor_step.__get__(optimizer)