Spaces:
Runtime error
Runtime error
Commit
·
20a5e29
1
Parent(s):
b9aba88
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
|
|
4 |
|
5 |
CAPTION_MODELS = {
|
6 |
'blip-base': 'Salesforce/blip-image-captioning-base',
|
@@ -15,12 +16,13 @@ CAPTION_MODELS = {
|
|
15 |
loaded_models = {}
|
16 |
|
17 |
# Simple caption creation
|
18 |
-
def caption_image(model_choice, image_input,
|
19 |
if image_input is not None:
|
20 |
-
input_data = image_input
|
21 |
else:
|
22 |
-
input_data =
|
23 |
|
|
|
24 |
model_key = (model_choice, load_in_8bit) # Create a tuple to represent the unique combination of model and 8bit loading
|
25 |
|
26 |
# Check if the model is already loaded
|
@@ -32,7 +34,7 @@ def caption_image(model_choice, image_input, url_input, load_in_8bit, device):
|
|
32 |
captioner = pipeline(task="image-to-text",
|
33 |
model=CAPTION_MODELS[model_choice],
|
34 |
max_new_tokens=30,
|
35 |
-
device=
|
36 |
model_kwargs=model_kwargs,
|
37 |
torch_dtype=dtype, # Set the floating point
|
38 |
use_fast=True
|
@@ -40,14 +42,20 @@ def caption_image(model_choice, image_input, url_input, load_in_8bit, device):
|
|
40 |
# Store the loaded model
|
41 |
loaded_models[model_key] = captioner
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
model_dropdown = gr.Dropdown(choices=list(CAPTION_MODELS.keys()), label='Select Caption Model')
|
47 |
-
image_input = gr.Image(type="pil", label="Input Image") # multiple
|
48 |
-
|
49 |
load_in_8bit = gr.Checkbox(label="Load model in 8bit")
|
50 |
-
device = gr.Radio(['cpu', 'cuda'], label='Select device')
|
51 |
|
52 |
-
iface = gr.Interface(
|
|
|
53 |
iface.launch()
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
+
import ast
|
5 |
|
6 |
CAPTION_MODELS = {
|
7 |
'blip-base': 'Salesforce/blip-image-captioning-base',
|
|
|
16 |
loaded_models = {}
|
17 |
|
18 |
# Simple caption creation
|
19 |
+
def caption_image(model_choice, image_input, url_inputs, load_in_8bit):
|
20 |
if image_input is not None:
|
21 |
+
input_data = [image_input]
|
22 |
else:
|
23 |
+
input_data = ast.literal_eval(url_inputs) # interpret the input string as a list
|
24 |
|
25 |
+
captions = []
|
26 |
model_key = (model_choice, load_in_8bit) # Create a tuple to represent the unique combination of model and 8bit loading
|
27 |
|
28 |
# Check if the model is already loaded
|
|
|
34 |
captioner = pipeline(task="image-to-text",
|
35 |
model=CAPTION_MODELS[model_choice],
|
36 |
max_new_tokens=30,
|
37 |
+
device='cpu', # Set the device as CPU
|
38 |
model_kwargs=model_kwargs,
|
39 |
torch_dtype=dtype, # Set the floating point
|
40 |
use_fast=True
|
|
|
42 |
# Store the loaded model
|
43 |
loaded_models[model_key] = captioner
|
44 |
|
45 |
+
for input_item in input_data:
|
46 |
+
caption = captioner(input_item)[0]['generated_text']
|
47 |
+
captions.append(str(caption).strip())
|
48 |
+
return captions
|
49 |
+
|
50 |
+
def launch(model_choice, image_input, url_inputs, load_in_8bit, device):
|
51 |
+
return caption_image(model_choice, image_input, url_inputs, load_in_8bit, device)
|
52 |
|
53 |
model_dropdown = gr.Dropdown(choices=list(CAPTION_MODELS.keys()), label='Select Caption Model')
|
54 |
+
image_input = gr.Image(type="pil", label="Input Image", multiple=True) # Enable multiple inputs
|
55 |
+
url_inputs = gr.Textbox(label="Input URLs")
|
56 |
load_in_8bit = gr.Checkbox(label="Load model in 8bit")
|
57 |
+
device = gr.Radio(['cpu', 'cuda'], label='Select device', default='cpu')
|
58 |
|
59 |
+
iface = gr.Interface(launch, inputs=[model_dropdown, image_input, url_inputs, load_in_8bit, device],
|
60 |
+
outputs=gr.outputs.Textbox(type="text", label="Caption"))
|
61 |
iface.launch()
|