Mediocreatmybest's picture
Update app.py
e1acbd5
raw
history blame
1.56 kB
import torch
import gradio as gr
from transformers import pipeline
CAPTION_MODELS = {
'blip-base': 'Salesforce/blip-image-captioning-base',
'blip-large': 'Salesforce/blip-image-captioning-large',
'vit-gpt2-coco-en': 'ydshieh/vit-gpt2-coco-en',
'blip2-2.7b-fp16': 'Mediocreatmybest/blip2-opt-2.7b-fp16-sharded',
}
# Create a dictionary to store loaded models
loaded_models = {}
# Simple caption creation
def caption_image(model_choice, image_input, url_input):
if image_input is not None:
input_data = image_input
else:
input_data = url_input
# Check if the model is already loaded
if model_choice in loaded_models:
captioner = loaded_models[model_choice]
else:
captioner = pipeline(task="image-to-text",
model=CAPTION_MODELS[model_choice],
max_new_tokens=30,
device_map="cpu", use_fast=True
)
# Store the loaded model
loaded_models[model_choice] = captioner
caption = captioner(input_data)[0]['generated_text']
return str(caption).strip()
def launch(model_choice, image_input, url_input):
return caption_image(model_choice, image_input, url_input)
model_dropdown = gr.Dropdown(choices=list(CAPTION_MODELS.keys()), label='Select Caption Model')
image_input = gr.Image(type="pil", label="Input Image")
url_input = gr.Text(label="Input URL")
iface = gr.Interface(launch, inputs=[model_dropdown, image_input, url_input], outputs="text")
iface.launch()