Spaces:
Running
Running
plot to info c & v
Browse files
app.py
CHANGED
@@ -163,14 +163,19 @@ def m5(que, image):
|
|
163 |
return processor3.decode(predictions[0], skip_special_tokens=True)
|
164 |
|
165 |
def m6(que, image):
|
166 |
-
processor3 = AutoProcessor.from_pretrained("google/pix2struct-infographics-vqa-large")
|
167 |
-
model3 = AutoModelForSeq2SeqLM.from_pretrained("google/pix2struct-infographics-vqa-large")
|
168 |
|
169 |
-
inputs = processor3(images=image, text=que, return_tensors="pt")
|
170 |
|
171 |
-
predictions = model3.generate(**inputs)
|
172 |
-
return processor3.decode(predictions[0], skip_special_tokens=True)
|
|
|
|
|
173 |
|
|
|
|
|
|
|
174 |
|
175 |
def predict_answer(category, que, image):
|
176 |
print(f"category is THIS {category}")
|
|
|
163 |
return processor3.decode(predictions[0], skip_special_tokens=True)
|
164 |
|
165 |
def m6(que, image):
|
166 |
+
# processor3 = AutoProcessor.from_pretrained("google/pix2struct-infographics-vqa-large")
|
167 |
+
# model3 = AutoModelForSeq2SeqLM.from_pretrained("google/pix2struct-infographics-vqa-large")
|
168 |
|
169 |
+
# inputs = processor3(images=image, text=que, return_tensors="pt")
|
170 |
|
171 |
+
# predictions = model3.generate(**inputs)
|
172 |
+
# return processor3.decode(predictions[0], skip_special_tokens=True)
|
173 |
+
processor3 = Pix2StructProcessor.from_pretrained('google/matcha-plotqa-v2')
|
174 |
+
model3 = Pix2StructForConditionalGeneration.from_pretrained('google/matcha-plotqa-v2')
|
175 |
|
176 |
+
inputs = processor3(images=image, text=que, return_tensors="pt")
|
177 |
+
predictions = model3.generate(**inputs, max_new_tokens=512)
|
178 |
+
return processor3.decode(predictions[0], skip_special_tokens=True)
|
179 |
|
180 |
def predict_answer(category, que, image):
|
181 |
print(f"category is THIS {category}")
|