# app.py import gradio as gr import torch from transformers import pipeline # Load a fast automatic speech recognition pipeline asr_pipeline = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") def transcribe_audio(audio): if audio is None: return "No audio input" text = asr_pipeline(audio)["text"] return text # Gradio Interface iface = gr.Interface( fn=transcribe_audio, inputs=gr.Audio(sources=["microphone"], type="filepath"), outputs=gr.Textbox(label="Recognized Text"), live=True, title="Real-time Voice to Text (Fast Version)", description="Speak into your microphone and get instant transcription!", ) if __name__ == "__main__": iface.launch()