Spaces:
Running
Running
File size: 874 Bytes
5d9bcf4 3dfe891 5d9bcf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
# app.py
import gradio as gr
import torch
import whisper
# Load a fast Whisper model
model = whisper.load_model("small") # You can use "tiny" if you want even faster
def transcribe_audio(audio):
# Audio is received as a tuple (sample_rate, numpy_array)
audio = audio[1] # Get the raw audio waveform
# Whisper expects 16000 Hz sample rate
result = model.transcribe(audio, fp16=torch.cuda.is_available())
text = result["text"]
return text
# Gradio Interface
iface = gr.Interface(
fn=transcribe_audio,
inputs=gr.Audio(sources=["microphone"], type="numpy", streaming=True),
outputs=gr.Textbox(label="Recognized Text"),
live=True, # Important for real-time streaming
title="Real-time Voice to Text",
description="Speak into your microphone and get real-time transcription!",
)
if __name__ == "__main__":
iface.launch() |