Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
from datasets import load_dataset
|
|
|
|
|
4 |
import torch
|
5 |
# import librosa
|
6 |
|
7 |
# 加载 Whisper 模型和 processor
|
8 |
-
model_name = "openai/whisper-large-v3-turbo"
|
9 |
-
processor = WhisperProcessor.from_pretrained(model_name)
|
10 |
-
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
|
|
|
|
11 |
|
12 |
# 加载数据集 bigcode/the-stack
|
13 |
|
@@ -16,17 +20,20 @@ ds = load_dataset("CoIR-Retrieval/CodeSearchNet-php-queries-corpus")
|
|
16 |
def transcribe(audio_path):
|
17 |
# 加载音频文件并转换为信号
|
18 |
# audio, sr = librosa.load(audio_path, sr=16000)
|
19 |
-
input_values = processor(audio_path, return_tensors="pt", sampling_rate=16000).
|
20 |
|
21 |
-
# 模型推理
|
22 |
-
with torch.no_grad():
|
23 |
-
|
24 |
|
25 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
26 |
-
transcription = processor.batch_decode(predicted_ids)
|
27 |
-
|
|
|
|
|
|
|
28 |
# 返回转录结果
|
29 |
-
return transcription
|
30 |
|
31 |
|
32 |
# Gradio 界面
|
|
|
1 |
import gradio as gr
|
2 |
+
# from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
from datasets import load_dataset
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
import torch
|
7 |
# import librosa
|
8 |
|
9 |
# 加载 Whisper 模型和 processor
|
10 |
+
# model_name = "openai/whisper-large-v3-turbo"
|
11 |
+
# processor = WhisperProcessor.from_pretrained(model_name)
|
12 |
+
# model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
13 |
+
|
14 |
+
model = pipeline("automatic-speech-recognition", model="ylacombe/whisper-large-v3-turbo", chunk_length_s=30, device=0)
|
15 |
|
16 |
# 加载数据集 bigcode/the-stack
|
17 |
|
|
|
20 |
def transcribe(audio_path):
|
21 |
# 加载音频文件并转换为信号
|
22 |
# audio, sr = librosa.load(audio_path, sr=16000)
|
23 |
+
# input_values = processor(audio_path, return_tensors="pt", sampling_rate=16000).["text"]
|
24 |
|
25 |
+
# # 模型推理
|
26 |
+
# with torch.no_grad():
|
27 |
+
# logits = model(input_values).logits
|
28 |
|
29 |
+
# predicted_ids = torch.argmax(logits, dim=-1)
|
30 |
+
# transcription = processor.batch_decode(predicted_ids)
|
31 |
+
|
32 |
+
transcription = model(audio_path,batch_size=1000, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
|
33 |
+
|
34 |
+
# result = pipe(sample)
|
35 |
# 返回转录结果
|
36 |
+
return transcription
|
37 |
|
38 |
|
39 |
# Gradio 界面
|