Mdean77 commited on
Commit
a841fcc
·
1 Parent(s): c7761e6

Starting some retreivals

Browse files
Files changed (1) hide show
  1. app.py +29 -11
app.py CHANGED
@@ -18,7 +18,7 @@ from prompts import rag_prompt_template
18
  from defaults import default_llm
19
  from operator import itemgetter
20
  from langchain.schema.output_parser import StrOutputParser
21
-
22
 
23
 
24
 
@@ -93,9 +93,7 @@ async def on_chat_start():
93
  )
94
 
95
  text_chunks = text_splitter.split_text(extracted_text)
96
- # print(f"Number of chunks: {len(text_chunks)} ")
97
  document = [Document(page_content=chunk) for chunk in text_chunks]
98
- # print(f"Length of document: {len(document)}")
99
 
100
  msg = cl.Message(
101
  content=f"""Splitting the text with a recursive character splitter.
@@ -110,10 +108,10 @@ async def on_chat_start():
110
 
111
  qdrant_vectorstore = getVectorstore(document, file.name)
112
 
113
- protocol_retriever = qdrant_vectorstore.as_retriever(search_kwargs={"k":15})
114
- # document_titles = [file.name]
115
-
116
-
117
  protocol_retriever = qdrant_vectorstore.as_retriever(
118
  search_kwargs={
119
  'filter': rest.Filter(
@@ -127,9 +125,6 @@ async def on_chat_start():
127
  'k': 15,
128
  }
129
  )
130
- # # protocol_retriever = qdrant_vectorstore.as_retriever()
131
-
132
- # protocol_retriever = create_protocol_retriever(document_titles)
133
 
134
  # Create prompt
135
  rag_prompt = ChatPromptTemplate.from_template(prompts.rag_prompt_template)
@@ -159,4 +154,27 @@ async def on_chat_start():
159
  )
160
 
161
  await msg.send()
162
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  from defaults import default_llm
19
  from operator import itemgetter
20
  from langchain.schema.output_parser import StrOutputParser
21
+ from datetime import date
22
 
23
 
24
 
 
93
  )
94
 
95
  text_chunks = text_splitter.split_text(extracted_text)
 
96
  document = [Document(page_content=chunk) for chunk in text_chunks]
 
97
 
98
  msg = cl.Message(
99
  content=f"""Splitting the text with a recursive character splitter.
 
108
 
109
  qdrant_vectorstore = getVectorstore(document, file.name)
110
 
111
+ # My vectorstore may have multiple protocols or documents that have been stored and persisted.
112
+ # But I only want the context of the current session to relate to a document that I just processed
113
+ # so I need to pass in the title of the document. This will act as a filter for the retrieved
114
+ # chunks.
115
  protocol_retriever = qdrant_vectorstore.as_retriever(
116
  search_kwargs={
117
  'filter': rest.Filter(
 
125
  'k': 15,
126
  }
127
  )
 
 
 
128
 
129
  # Create prompt
130
  rag_prompt = ChatPromptTemplate.from_template(prompts.rag_prompt_template)
 
154
  )
155
 
156
  await msg.send()
157
+
158
+ # Now let's test the application to make a consent document
159
+ start_time = time.time()
160
+ # Brute force method that just saves each generated section as string
161
+ summary = rag_chain.invoke({"question":summary_query()})
162
+ background = rag_chain.invoke({"question":background_query()})
163
+ number_of_participants = rag_chain.invoke({"question":number_of_participants_query()})
164
+ study_procedures = rag_chain.invoke({"question":study_procedures_query()})
165
+ alt_procedures = rag_chain.invoke({"question":alt_procedures_query()})
166
+ risks = rag_chain.invoke({"question":risks_query()})
167
+ benefits = rag_chain.invoke({"question":benefits_query()})
168
+
169
+ end_time = time.time()
170
+ execution_time = end_time - start_time
171
+
172
+ msg = cl.Message(
173
+ content=f"""
174
+ Brute force (sequential) execution time: {execution_time:.2f} seconds.
175
+ {summary}
176
+ """
177
+
178
+ )
179
+
180
+ await msg.send()