Mdean77's picture
Have refactored dockerfile to start with qdrant image and add the other stuff.
2edf2fb
raw
history blame
4.17 kB
import os
from dotenv import load_dotenv
load_dotenv()
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
import chainlit as cl
import pymupdf
import tiktoken
from langchain_core.documents.base import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
import getVectorstore
from getVectorstore import getVectorstore
from qdrant_client.http import models as rest
from langchain.prompts import ChatPromptTemplate
import prompts
from prompts import rag_prompt_template
from defaults import default_llm
from operator import itemgetter
from langchain.schema.output_parser import StrOutputParser
@cl.on_chat_start
async def on_chat_start():
files = await cl.AskFileMessage(
content="Upload a file to proceed",
accept=["application/pdf"],
max_size_mb=50,
timeout=180,
).send()
file = files[0]
doc = pymupdf.Document(file.path)
toc = doc.get_toc()
# Want to find the List Of Figures page because that is the last page I want to skip
# Default is 1 if I do not find better start location
start_page = 1
for _, title, page in toc:
if title == "List of Figures":
print(f"{title} on page {page}")
start_page = page + 1
# get the last page I want included
# default is last page of document
end_page = len(doc)
for _, title, page in toc:
if ("References" in title) or ("Bibliography" in title):
print(f"{title} on page {page}")
end_page = page
print(f"Extraction should start on page {start_page} and end on page {end_page}")
# need a rect that will exclude headers and footers
rect = pymupdf.Rect(0.0, 100.0, 612.0, 650.0)
#create the final text
extracted_text = ""
for page in doc.pages():
if page.number in range(start_page-1, end_page):
# print(page.get_text(clip=rect))
extracted_text += page.get_text(clip=rect)
msg = cl.Message(
content=f"""Processing selected file: `{file.name}`...
Extraction beginning on page {start_page} and ending on page {end_page}.
Using a clipping rectangle to exclude headers and footers ({rect}).
Processed {end_page - start_page} pages of PDF document.
Length of extracted text string is {len(extracted_text)}
"""
)
await msg.send()
chunk_size = 2000
chunk_overlap = 200
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap = chunk_overlap,
# length_function = tiktoken_len
)
text_chunks = text_splitter.split_text(extracted_text)
# print(f"Number of chunks: {len(text_chunks)} ")
document = [Document(page_content=chunk) for chunk in text_chunks]
# print(f"Length of document: {len(document)}")
msg = cl.Message(
content=f"""Splitting the text with a recursive character splitter.
Set chunk size at {chunk_size} and overlap at {chunk_overlap}.
Number of resulting chunks: {len(text_chunks)}.
Document created from chunks to get stored in vector database.
Length of the document: {len(document)} (should be same as number of chunks).
"""
)
await msg.send()
qdrant_vectorstore = getVectorstore(document, file.path)
document_titles = ["protocol.pdf", "consent.pdf"]
# protocol_retriever = qdrant_vectorstore.as_retriever()
# protocol_retriever = create_protocol_retriever(document_titles)
protocol_retriever = qdrant_vectorstore.as_retriever(
search_kwargs={
'filter': rest.Filter(
must=[
rest.FieldCondition(
key="metadata.document_title",
match=rest.MatchAny(any=document_titles)
)
]
),
'k':15,
}
)
# Create prompt
rag_prompt = ChatPromptTemplate.from_template(prompts.rag_prompt_template)
llm = default_llm
rag_chain = (
{"context": itemgetter("question") | protocol_retriever, "question": itemgetter("question")}
| rag_prompt | llm | StrOutputParser()
)