Spaces:
Sleeping
Sleeping
app
Browse files- emploi2021.py +165 -0
emploi2021.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import json
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import streamlit as st
|
5 |
+
import streamlit.components.v1 as stc
|
6 |
+
import plotly.express as px
|
7 |
+
import seaborn as sns
|
8 |
+
from streamlit_option_menu import option_menu
|
9 |
+
|
10 |
+
sns.set()
|
11 |
+
logo = "https://www.ville-creteil.fr/img/Une-logo-pole-emploi.jpg"
|
12 |
+
logo2 = ""
|
13 |
+
|
14 |
+
st.set_page_config(page_icon = logo2,
|
15 |
+
page_title ="Bonsoir !", layout = "wide")
|
16 |
+
|
17 |
+
df = pd.read_csv("df_clean2.csv")
|
18 |
+
departement_geo = json.load(open("departements.geojson", "r"))
|
19 |
+
|
20 |
+
liste_dep = sorted(df.NomDept.unique().tolist())
|
21 |
+
liste_famille = df.famille.unique().tolist()
|
22 |
+
liste_metier = list(df.metier.unique())
|
23 |
+
|
24 |
+
|
25 |
+
dico_map = {}
|
26 |
+
for feature in departement_geo["features"]:
|
27 |
+
feature['id']=feature['properties']['code']
|
28 |
+
dico_map[feature['properties']['nom']] = feature['id']
|
29 |
+
|
30 |
+
|
31 |
+
def heatmap(dep):
|
32 |
+
departement = df[df.NomDept == dep]
|
33 |
+
|
34 |
+
dep_tail = departement.groupby(["metier"]).agg({"Nbr_demande":"sum"}).sort_values(by="Nbr_demande", ascending = True).head(10)
|
35 |
+
labels_tail = dep_tail.index.values.tolist()
|
36 |
+
|
37 |
+
dep_head = departement.groupby(["metier"]).agg({"Nbr_demande":"sum"}).sort_values(by="Nbr_demande", ascending = True).tail(10)
|
38 |
+
labels_head = dep_head.index.values.tolist()
|
39 |
+
|
40 |
+
|
41 |
+
sns.set()
|
42 |
+
dep_head.reset_index(inplace=True)
|
43 |
+
dep_head = dep_head.sort_values("Nbr_demande", ascending = False)
|
44 |
+
dep_head.columns = ["metier", "nbr_demande"]
|
45 |
+
|
46 |
+
dep_tail.reset_index(inplace=True)
|
47 |
+
dep_tail = dep_tail.sort_values("Nbr_demande", ascending = False)
|
48 |
+
dep_tail.columns = ["metier", "nbr_demande"]
|
49 |
+
|
50 |
+
|
51 |
+
fig1= plt.figure()
|
52 |
+
sns.barplot(y= "metier", x= "nbr_demande", data = dep_head,
|
53 |
+
orient="h", palette ="Reds_r")
|
54 |
+
plt.xlabel("")
|
55 |
+
plt.title("Les métier les plus demandés", fontsize= 18)
|
56 |
+
plt.ylabel("")
|
57 |
+
|
58 |
+
st.pyplot(fig1)
|
59 |
+
|
60 |
+
fig2= plt.figure()
|
61 |
+
sns.barplot(y= "metier", x= "nbr_demande", data = dep_tail, orient="h", palette ="Blues")
|
62 |
+
plt.xlabel("")
|
63 |
+
plt.title("Les métier les moins demandés", fontsize= 18)
|
64 |
+
plt.ylabel("")
|
65 |
+
plt.xlim(0,50)
|
66 |
+
|
67 |
+
st.pyplot(fig2)
|
68 |
+
|
69 |
+
def demande_metier(metier):
|
70 |
+
|
71 |
+
df_metier = df[df.metier == metier]
|
72 |
+
choro = df_metier.groupby(by=["NomDept"]).agg({"Nbr_demande":"sum"})
|
73 |
+
choro = choro.reset_index()
|
74 |
+
choro['id']=choro['NomDept'].apply(lambda x: dico_map[x])
|
75 |
+
|
76 |
+
|
77 |
+
fig = px.choropleth_mapbox(choro, width = 900, height =100, locations="id", geojson = departement_geo, color = "Nbr_demande", hover_name = "NomDept",
|
78 |
+
mapbox_style = "open-street-map",
|
79 |
+
center = {"lat":46.80, "lon":3.02}, zoom = 5, opacity = 0.5,
|
80 |
+
title = metier)
|
81 |
+
|
82 |
+
fig.update_geos(fitbounds = "locations", visible = False)
|
83 |
+
fig.update_layout(height=800, title_font_size = 25)
|
84 |
+
|
85 |
+
st.plotly_chart(fig)
|
86 |
+
|
87 |
+
def departement_page():
|
88 |
+
|
89 |
+
dep = st.selectbox("Choisir un département",liste_dep)
|
90 |
+
heatmap(dep)
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
def metier_page():
|
95 |
+
|
96 |
+
|
97 |
+
famille = st.selectbox("Famille de métier",liste_famille)
|
98 |
+
liste_metier = df[df.famille == famille]["metier"].unique().tolist()
|
99 |
+
metier = st.selectbox("Choisir un métier", liste_metier)
|
100 |
+
|
101 |
+
demande_metier(metier)
|
102 |
+
|
103 |
+
|
104 |
+
def contact_message():
|
105 |
+
st.header(":mailbox: Let's Get In Touch !")
|
106 |
+
|
107 |
+
name, message = st.columns((1,2))
|
108 |
+
with name:
|
109 |
+
contact_form = """<form action="https://formsubmit.co/[email protected]" method="POST">
|
110 |
+
<input type="text" name="name" placeholder = "Ton Nom" required>
|
111 |
+
<input type="email" name="email" placeholder = "Ton E-mail" required>
|
112 |
+
</form>"""
|
113 |
+
st.markdown(contact_form, unsafe_allow_html=True)
|
114 |
+
|
115 |
+
with message :
|
116 |
+
contact_form2 = """<form action="https://formsubmit.co/[email protected]" method="POST">
|
117 |
+
<textarea name="message" placeholder="Ecris moi !"></textarea>
|
118 |
+
<button type="submit">Send</button>
|
119 |
+
"""
|
120 |
+
st.markdown(contact_form2, unsafe_allow_html=True)
|
121 |
+
|
122 |
+
with open("style.txt") as f:
|
123 |
+
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
def main():
|
130 |
+
st.title("Tendances de l'emploi en 2021")
|
131 |
+
|
132 |
+
with st.sidebar:
|
133 |
+
st.image(logo, width = 300)
|
134 |
+
st.markdown("#")
|
135 |
+
st.markdown("####")
|
136 |
+
|
137 |
+
choice = option_menu(
|
138 |
+
menu_title = "Analyses",
|
139 |
+
options = ["Par département", "Par métier", "Envoie Moi Un Message"],
|
140 |
+
icons=["house","hammer","envelope"],
|
141 |
+
menu_icon="search"
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
if choice == "Par département":
|
147 |
+
departement_page()
|
148 |
+
elif choice == "Par métier":
|
149 |
+
metier_page()
|
150 |
+
elif choice == "Envoie Moi Un Message":
|
151 |
+
contact_message()
|
152 |
+
|
153 |
+
|
154 |
+
st.sidebar.markdown("####")
|
155 |
+
st.sidebar.markdown("####")
|
156 |
+
st.sidebar.subheader(":notebook_with_decorative_cover: Par Maxime Le Tutour :relieved: ")
|
157 |
+
|
158 |
+
st.sidebar.write(" :blue_book: [**LinkedIn**](https://share.streamlit.io/mesmith027/streamlit_webapps/main/MC_pi/streamlit_app.py)", unsafe_allow_html =True)
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
if __name__ == '__main__':
|
165 |
+
main()
|