File size: 9,132 Bytes
e5dee3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""legend_builders.py
====================
Minimal‑dependency helpers that generate **static** legend HTML + CSS matching
DataMapPlot’s own class names.  Drop the returned strings straight into
``create_interactive_plot(custom_html=…, custom_css=…)``.

Highlights
----------
* **continuous_legend_html_css** – full control over ticks, label, size &
  absolute position (via an *anchor* keyword).
* **categorical_legend_html_css** – swatch legend with optional title, flexible
  anchor, row/column layout and custom swatch size.

Both helpers return ``(html, css)`` so you can concatenate multiple legends.
No JavaScript is injected – they render statically but look native.  If you
later add JS (e.g. DMP’s `ColorLegend` behaviour), the class names already fit.
"""

from __future__ import annotations

from typing import Dict, List, Sequence, Tuple, Union
from datetime import datetime, date
import matplotlib.cm as _cm
from matplotlib.colors import to_hex, to_rgb

Colour = Union[str, tuple]
__all__ = ["continuous_legend_html_css", "categorical_legend_html_css"]

# ---------------------------------------------------------------------------
# helpers
# ---------------------------------------------------------------------------

def _hex(c: Colour) -> str:
    """Convert *c* to #RRGGBB hex (handles any Matplotlib‑parsable colour)."""
    return c if isinstance(c, str) else to_hex(to_rgb(c))


def _gradient(cmap: Union[str, _cm.Colormap, Sequence[str]], *, vertical: bool = True) -> str:
    """Return a CSS linear‑gradient from a Matplotlib cmap or explicit colour list."""
    if isinstance(cmap, (list, tuple)):
        stops = [_hex(c) for c in cmap]
    else:
        cmap = _cm.get_cmap(cmap) if isinstance(cmap, str) else cmap
        stops = [to_hex(cmap(i / 255)) for i in range(256)]
    direction = "to top" if vertical else "to right"
    return f"linear-gradient({direction}, {', '.join(stops)})"


_ANCHOR_CSS: Dict[str, str] = {
    "top-left": "top:10px; left:10px;",
    "top-right": "top:10px; right:10px;",
    "bottom-left": "bottom:10px; left:10px;",
    "bottom-right": "bottom:10px; right:10px;",
    "middle-left": "top:50%; left:10px; transform:translateY(-50%);",
    "middle-right": "top:50%; right:10px; transform:translateY(-50%);",
    "middle-center": "top:50%; left:50%; transform:translate(-50%,-50%);",
}

# ---------------------------------------------------------------------------
# continuous legend
# ---------------------------------------------------------------------------

def continuous_legend_html_css(
    cmap: Union[str, _cm.Colormap, Sequence[str]],
    vmin: Union[int, float, datetime, date],
    vmax: Union[int, float, datetime, date],
    *,
    ticks: Sequence[Union[int, float, datetime, date]] | None = None,
    label: str | None = None,
    bar_size: tuple[int, int] = (10, 200),
    anchor: str = "top-right",
    container_id: str = "dmp-colorbar",
) -> Tuple[str, str]:
    """Return *(html, css)* snippet for a static colour‑bar legend."""

    # ---------- ticks -----------------------------------------------------
    if ticks is None:
        ticks = [vmin + (vmax - vmin) * i / 4 for i in range(5)]  # type: ignore

    def _fmt(val):
        if isinstance(val, (datetime, date)):
            return val.strftime("%Y")
        sci = max(abs(float(vmin)), abs(float(vmax))) >= 1e5 or 0 < abs(float(vmin)) <= 1e-4
        if sci:
            return f"{val:.1e}"
        return f"{val:.0f}" if float(val).is_integer() else f"{val:.2f}"

    tick_labels = [_fmt(t) for t in ticks]

    # relative positions (0% top, 100% bottom) -----------------------------
    def _rel(val):
        if isinstance(val, (datetime, date)):
            rng = (ticks[-1] - ticks[0]).total_seconds() or 1
            return (ticks[-1] - val).total_seconds() / rng * 100
        rng = float(ticks[-1] - ticks[0]) or 1
        return (ticks[-1] - val) / rng * 100

    # ---------- HTML ------------------------------------------------------
    w, h = bar_size
    html: List[str] = [f'<div id="{container_id}" class="colorbar-container">']

    if label:
        html.append(
            f'  <div class="colorbar-label" style="writing-mode:vertical-rl; transform:rotate(180deg); margin-right:8px;">{label}</div>'
        )

    html.append(f'  <div class="colorbar" style="width:{w}px; height:{h}px; background:{_gradient(cmap)};"></div>')
    html.append('  <div class="colorbar-tick-container">')

    for pos, lab in zip([_rel(t) for t in ticks], tick_labels):
        html.append(
            f'    <div class="colorbar-tick" style="top:{pos:.2f}%;">'
            '      <div class="colorbar-tick-line"></div>'
            f'      <div class="colorbar-tick-label">{lab}</div>'
            '    </div>'
        )

    html.extend(['  </div>', '</div>'])

    # ---------- CSS -------------------------------------------------------
    pos_css = _ANCHOR_CSS.get(anchor, _ANCHOR_CSS["top-right"])
    css = f"""
#{container_id} {{position:absolute; {pos_css} z-index:100; display:flex; align-items:center; gap:4px; padding:10px;}}
#{container_id} .colorbar-tick-container {{position:relative; width:40px; height:{h}px;}}
#{container_id} .colorbar-tick {{position:absolute; display:flex; align-items:center; gap:4px; transform:translateY(-50%); font-size:12px;}}
#{container_id} .colorbar-tick-line {{width:8px; height:1px; background:#333;}}
#{container_id} .colorbar-label {{font-size:12px;}}
"""

    return "\n".join(html), css

# ---------------------------------------------------------------------------
# categorical legend
# ---------------------------------------------------------------------------

def categorical_legend_html_css(
    color_mapping: Dict[str, Colour],
    *,
    title: str | None = None,
    swatch: int = 12,
    anchor: str = "bottom-left",
    container_id: str = "dmp-catlegend",
    rows: bool = True,
) -> Tuple[str, str]:
    """Return *(html, css)* for a swatch legend."""

    html: List[str] = [f'<div id="{container_id}" class="color-legend-container">']
    if title:
        html.append(f'  <div class="legend-title">{title}</div>')
    for lbl, col in color_mapping.items():
        html.append(
            '  <div class="legend-item">'
            f'    <div class="color-swatch-box" style="background:{_hex(col)};"></div>'
            f'    <div class="legend-label">{lbl}</div>'
            '  </div>'
        )
    html.append('</div>')

    pos_css = _ANCHOR_CSS.get(anchor, _ANCHOR_CSS["bottom-left"])
    css = f"""
#{container_id} {{position:absolute; {pos_css} z-index:100; display:flex; flex-direction:{'column' if rows else 'row'}; gap:4px; padding:10px;}}
#{container_id} .legend-title {{font-weight:bold; margin-bottom:4px;}}
#{container_id} .legend-item {{display:flex; align-items:center; gap:4px;}}
#{container_id} .color-swatch-box {{width:{swatch}px; height:{swatch}px; border-radius:2px; border:1px solid #555;}}
#{container_id} .legend-label {{font-size:12px;}}
"""

    return "\n".join(html), css

# ---------------------------------------------------------------------------
# sample script for quick testing
# ---------------------------------------------------------------------------
if __name__ == "__main__":
    # pip install datamapplot matplotlib numpy to run this demo
    import numpy as np
    from matplotlib import cm
    import datamapplot as dmp

    # dummy data ----------------------------------------------------------
    n = 400
    rng = np.random.default_rng(0)
    coords = rng.normal(size=(n, 2))
    years = rng.integers(1990, 2025, size=n)

    # quadrant labels -----------------------------------------------------
    quad = np.where(coords[:, 0] >= 0,
                    np.where(coords[:, 1] >= 0, "A", "D"),
                    np.where(coords[:, 1] >= 0, "B", "C"))

    # colours -------------------------------------------------------------
    grey = "#bbbbbb"
    cols = np.full(n, grey, dtype=object)
    mask = rng.random(n) < 0.1
    vir = cm.get_cmap("viridis")
    cols[mask] = [to_hex(vir((y - years.min())/(years.max()-years.min()))) for y in years[mask]]

    # legends -------------------------------------------------------------
    html_bar, css_bar = continuous_legend_html_css(
        vir, years.min(), years.max(), label="Year", anchor="middle-right", ticks=[1990, 2000, 2010, 2020, 2024]
    )
    html_cat, css_cat = categorical_legend_html_css(
        {lbl: col for lbl, col in zip("ABCD", cm.tab10.colors)}, title="Quadrant", anchor="bottom-left"
    )

    custom_html = html_bar + html_cat
    custom_css = css_bar + css_cat

    # plot ---------------------------------------------------------------
    plot = dmp.create_interactive_plot(
        coords, quad,
        hover_text=np.arange(n).astype(str),
        marker_color_array=cols,
        custom_html=custom_html,
        custom_css=custom_css,
    )

    # In Jupyter this shows automatically; otherwise save:
    # with open("demo.html", "w") as f:
    #     f.write(str(plot))

    print("Demo plot generated – view in a notebook or open the saved HTML.")