Spaces:
Running
on
Zero
Running
on
Zero
File size: 67,301 Bytes
a236b7f b1b5dc2 ad4e2b9 b1b5dc2 d6522f3 b1b5dc2 d6522f3 9c57eb7 d6522f3 137342e d6522f3 137342e d6522f3 137342e 2b3a335 abbe3d1 137342e abbe3d1 2b3a335 abbe3d1 5460b58 2f63946 b1b5dc2 ad4e2b9 b1b5dc2 1d3ba67 ad4e2b9 1d3ba67 b1b5dc2 3a5b459 cabc445 8016bd1 3a5b459 8016bd1 3a5b459 8016bd1 387f245 b1b5dc2 1431c60 b1b5dc2 41c382c 887a63e d491a19 b1b5dc2 a236b7f 2887a58 a236b7f cabc445 a236b7f 6fb2f1c b1b5dc2 60c1b0a b1b5dc2 cabc445 f895c88 b1b5dc2 f895c88 b1b5dc2 f895c88 b1b5dc2 e5dee3b b1b5dc2 f895c88 b1b5dc2 0fbb97c f2b9a34 2b75953 f2b9a34 66a3d8f f2b9a34 60fbdb7 b1b5dc2 387f245 b1b5dc2 a236b7f b1b5dc2 80e91af b1b5dc2 dbd8935 b1b5dc2 1dbcc7d a236b7f dbd8935 a236b7f dbd8935 887a63e f895c88 a236b7f cabc445 ad4e2b9 b1b5dc2 f895c88 b1b5dc2 f895c88 b1b5dc2 f895c88 b1b5dc2 ad4e2b9 cabc445 f895c88 b1b5dc2 ad4e2b9 f895c88 ad4e2b9 b1b5dc2 3d53dd3 887a63e b1b5dc2 ad4e2b9 cabc445 ad4e2b9 f895c88 ad4e2b9 f895c88 ad4e2b9 e5dee3b b1b5dc2 ad4e2b9 e5dee3b 1431c60 f895c88 ad4e2b9 f895c88 ad4e2b9 f895c88 ad4e2b9 f895c88 e5dee3b f895c88 ad4e2b9 e5dee3b f895c88 e5dee3b f895c88 e5dee3b f895c88 e5dee3b f895c88 e5dee3b f895c88 e5dee3b f895c88 20cd1f4 f895c88 ad4e2b9 f895c88 e5dee3b f895c88 ad4e2b9 f895c88 20cd1f4 f895c88 ad4e2b9 20cd1f4 ad4e2b9 b1b5dc2 ad4e2b9 887a63e b1b5dc2 f895c88 b1b5dc2 f895c88 cabc445 f895c88 20cd1f4 f895c88 e5dee3b 20cd1f4 e5dee3b 20cd1f4 f895c88 e5dee3b f895c88 e5dee3b f895c88 e5dee3b f895c88 b1b5dc2 e5dee3b b1b5dc2 e5dee3b f895c88 b1b5dc2 e5dee3b b1b5dc2 ad4e2b9 b1b5dc2 e5dee3b 20cd1f4 e5dee3b 20cd1f4 e5dee3b 20cd1f4 e5dee3b 20cd1f4 e5dee3b 20cd1f4 e5dee3b 20cd1f4 e5dee3b b1b5dc2 ad4e2b9 b1b5dc2 e5dee3b 9028ab4 b1b5dc2 e5dee3b b1b5dc2 cabc445 e5dee3b b1b5dc2 e5dee3b b1b5dc2 ad4e2b9 2b3a335 f895c88 e5dee3b b1b5dc2 d37c745 b1b5dc2 d37c745 b1b5dc2 ad4e2b9 e1c0285 b1b5dc2 f895c88 e5dee3b b1b5dc2 e5dee3b f895c88 b1b5dc2 e1c0285 b1b5dc2 f895c88 b1b5dc2 e1c0285 b1b5dc2 e1c0285 b1b5dc2 20cd1f4 b1b5dc2 3673672 b1b5dc2 f895c88 b1b5dc2 f895c88 b1b5dc2 f895c88 3673672 5460b58 b1b5dc2 d37c745 b1b5dc2 887a63e b1b5dc2 5460b58 b1b5dc2 f895c88 b1b5dc2 f895c88 b1b5dc2 ad4e2b9 b1b5dc2 ad4e2b9 b1b5dc2 f895c88 b1b5dc2 f895c88 b1b5dc2 f895c88 b1b5dc2 f895c88 b1b5dc2 ad4e2b9 c3c41c1 ad4e2b9 f895c88 cabc445 f895c88 cabc445 f895c88 cabc445 f895c88 cabc445 f895c88 b1b5dc2 6530acf b1b5dc2 4c3ab20 b1b5dc2 6530acf b1b5dc2 887a63e b1b5dc2 c3c41c1 cabc445 c3c41c1 b1b5dc2 f895c88 b1b5dc2 f895c88 b1b5dc2 f895c88 b1b5dc2 f895c88 b1b5dc2 f895c88 b1b5dc2 ad4e2b9 cabc445 f895c88 b1b5dc2 f895c88 b1b5dc2 60fbdb7 2282ec1 b1b5dc2 387f245 60c1b0a 7809ddd 60c1b0a 7809ddd 387f245 b76e10d 15ce78e b76e10d 15ce78e ad4e2b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 |
#import spaces #
import time
print(f"Starting up: {time.strftime('%Y-%m-%d %H:%M:%S')}")
# source openalex_env_map/bin/activate
# Standard library imports
import os
#Enforce local cching:
# os.makedirs("./pip_cache", exist_ok=True)
# Pip:
# os.makedirs("./pip_cache", exist_ok=True)
# os.environ["PIP_CACHE_DIR"] = os.path.abspath("./pip_cache")
# # MPL:
# os.makedirs("./mpl_cache", exist_ok=True)
# os.environ["MPLCONFIGDIR"] = os.path.abspath("./mpl_cache")
# #Transformers
# os.makedirs("./transformers_cache", exist_ok=True)
# os.environ["TRANSFORMERS_CACHE"] = os.path.abspath("./transformers_cache")
# import numba
# print(numba.config)
# print("Numba threads:", numba.get_num_threads())
# numba.set_num_threads(16)
# print("Updated Numba threads:", numba.get_num_threads())
# import datamapplot.medoids
# print(help(datamapplot.medoids))
from pathlib import Path
from datetime import datetime
from itertools import chain
import ast # Add this import at the top with the standard library imports
import base64
import json
import pickle
# Third-party imports
import numpy as np
import pandas as pd
import torch
import gradio as gr
print(f"Gradio version: {gr.__version__}")
import subprocess
import re
from color_utils import rgba_to_hex
def print_datamapplot_version():
try:
# On Unix systems, you can pipe commands by setting shell=True.
version = subprocess.check_output("pip freeze | grep datamapplot", shell=True, text=True)
print("datamapplot version:", version.strip())
except subprocess.CalledProcessError:
print("datamapplot not found in pip freeze output.")
print_datamapplot_version()
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import uvicorn
import matplotlib.pyplot as plt
import tqdm
import colormaps
import matplotlib.colors as mcolors
from matplotlib.colors import Normalize
import random
import opinionated # for fonts
plt.style.use("opinionated_rc")
from sklearn.neighbors import NearestNeighbors
def is_running_in_hf_zero_gpu():
print(os.environ.get("SPACES_ZERO_GPU"))
return os.environ.get("SPACES_ZERO_GPU")
is_running_in_hf_zero_gpu()
def is_running_in_hf_space():
return "SPACE_ID" in os.environ
# #if is_running_in_hf_space():
# from spaces.zero.client import _get_token
try:
import spaces
from spaces.zero.client import _get_token
HAS_SPACES = True
except (ImportError, ModuleNotFoundError):
HAS_SPACES = False
# Provide a harmless fallback so decorators don't explode
if not HAS_SPACES:
class _Dummy:
def GPU(self, *a, **k):
def deco(f): # no-op decorator
return f
return deco
spaces = _Dummy() # fake module object
def _get_token(request): # stub, never called off-Space
return ""
#if is_running_in_hf_space():
#import spaces # necessary to run on Zero.
#print(f"Spaces version: {spaces.__version__}")
import datamapplot
import pyalex
# Local imports
from openalex_utils import (
openalex_url_to_pyalex_query,
get_field,
process_records_to_df,
openalex_url_to_filename,
get_records_from_dois,
openalex_url_to_readable_name
)
from ui_utils import highlight_queries
from styles import DATAMAP_CUSTOM_CSS
from data_setup import (
download_required_files,
setup_basemap_data,
setup_mapper,
setup_embedding_model,
)
from network_utils import create_citation_graph, draw_citation_graph
# Add colormap chooser imports
from colormap_chooser import ColormapChooser, setup_colormaps
# Add legend builder imports
try:
from legend_builders import continuous_legend_html_css, categorical_legend_html_css
HAS_LEGEND_BUILDERS = True
except ImportError:
print("Warning: legend_builders.py not found. Legends will be disabled.")
HAS_LEGEND_BUILDERS = False
# Configure OpenAlex
pyalex.config.email = "[email protected]"
print(f"Imports completed: {time.strftime('%Y-%m-%d %H:%M:%S')}")
# Set up colormaps for the chooser
print("Setting up colormaps...")
colormap_categories = setup_colormaps(
included_collections=['matplotlib', 'cmocean', 'scientific', 'cmasher'],
excluded_collections=['colorcet', 'carbonplan', 'sciviz']
)
colormap_chooser = ColormapChooser(
categories=colormap_categories,
smooth_steps=10,
strip_width=200,
strip_height=50,
css_height=200,
# show_search=False,
# show_category=False,
# show_preview=False,
# show_selected_name=True,
# show_selected_info=False,
gallery_kwargs=dict(columns=3, allow_preview=False, height="200px")
)
# Create a static directory to store the dynamic HTML files
static_dir = Path("./static")
static_dir.mkdir(parents=True, exist_ok=True)
# Tell Gradio which absolute paths are allowed to be served
os.environ["GRADIO_ALLOWED_PATHS"] = str(static_dir.resolve())
print("os.environ['GRADIO_ALLOWED_PATHS'] =", os.environ["GRADIO_ALLOWED_PATHS"])
# Create FastAPI app
app = FastAPI()
# Mount the static directory
app.mount("/static", StaticFiles(directory="static"), name="static")
# Resource configuration
REQUIRED_FILES = {
"100k_filtered_OA_sample_cluster_and_positions_supervised.pkl":
"https://huggingface.co/datasets/m7n/intermediate_sci_pickle/resolve/main/100k_filtered_OA_sample_cluster_and_positions_supervised.pkl",
"umap_mapper_250k_random_OA_discipline_tuned_specter_2_params.pkl":
"https://huggingface.co/datasets/m7n/intermediate_sci_pickle/resolve/main/umap_mapper_250k_random_OA_discipline_tuned_specter_2_params.pkl"
}
BASEMAP_PATH = "100k_filtered_OA_sample_cluster_and_positions_supervised.pkl"
MAPPER_PARAMS_PATH = "umap_mapper_250k_random_OA_discipline_tuned_specter_2_params.pkl"
MODEL_NAME = "m7n/discipline-tuned_specter_2_024"
# Initialize models and data
start_time = time.time()
print("Initializing resources...")
download_required_files(REQUIRED_FILES)
basedata_df = setup_basemap_data(BASEMAP_PATH)
mapper = setup_mapper(MAPPER_PARAMS_PATH)
model = setup_embedding_model(MODEL_NAME)
print(f"Resources initialized in {time.time() - start_time:.2f} seconds")
# Setting up decorators for embedding on HF-Zero:
def no_op_decorator(func):
"""A no-op (no operation) decorator that simply returns the function."""
def wrapper(*args, **kwargs):
# Do nothing special
return func(*args, **kwargs)
return wrapper
# # Decide which decorator to use based on environment
# decorator_to_use = spaces.GPU() if is_running_in_hf_space() else no_op_decorator
# #duration=120
@spaces.GPU(duration=1) # ← forces the detector to see a GPU-aware fn
def _warmup():
print("Warming up...")
_warmup()
# if is_running_in_hf_space():
@spaces.GPU(duration=30)
def create_embeddings_30(texts_to_embedd):
"""Create embeddings for the input texts using the loaded model."""
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192)
@spaces.GPU(duration=59)
def create_embeddings_59(texts_to_embedd):
"""Create embeddings for the input texts using the loaded model."""
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192)
@spaces.GPU(duration=120)
def create_embeddings_120(texts_to_embedd):
"""Create embeddings for the input texts using the loaded model."""
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192)
@spaces.GPU(duration=299)
def create_embeddings_299(texts_to_embedd):
"""Create embeddings for the input texts using the loaded model."""
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192)
# else:
def create_embeddings(texts_to_embedd):
"""Create embeddings for the input texts using the loaded model."""
return model.encode(texts_to_embedd, show_progress_bar=True, batch_size=192)
def predict(request: gr.Request, text_input, sample_size_slider, reduce_sample_checkbox,
sample_reduction_method, plot_type_dropdown,
locally_approximate_publication_date_checkbox,
download_csv_checkbox, download_png_checkbox, citation_graph_checkbox,
csv_upload, highlight_color, selected_colormap_name, seed_value,
progress=gr.Progress()):
"""
Main prediction pipeline that processes OpenAlex queries and creates visualizations.
Args:
request (gr.Request): Gradio request object
text_input (str): OpenAlex query URL
sample_size_slider (int): Maximum number of samples to process
reduce_sample_checkbox (bool): Whether to reduce sample size
sample_reduction_method (str): Method for sample reduction ("Random" or "Order of Results")
plot_type_dropdown (str): Type of plot coloring ("No special coloring", "Time-based coloring", "Categorical coloring")
locally_approximate_publication_date_checkbox (bool): Whether to approximate publication date locally before plotting.
download_csv_checkbox (bool): Whether to download CSV data
download_png_checkbox (bool): Whether to download PNG data
citation_graph_checkbox (bool): Whether to add citation graph
csv_upload (str): Path to uploaded CSV file
highlight_color (str): Color for highlighting points
selected_colormap_name (str): Name of the selected colormap for time-based coloring
progress (gr.Progress): Gradio progress tracker
Returns:
tuple: (link to visualization, iframe HTML)
"""
# Initialize start_time at the beginning of the function
start_time = time.time()
# Convert dropdown selection to boolean flags for backward compatibility
plot_time_checkbox = plot_type_dropdown == "Time-based coloring"
treat_as_categorical_checkbox = plot_type_dropdown == "Categorical coloring"
# Helper function to generate error responses
def create_error_response(error_message):
return [
error_message,
gr.DownloadButton(label="Download Interactive Visualization", value='html_file_path', visible=False),
gr.DownloadButton(label="Download CSV Data", value='csv_file_path', visible=False),
gr.DownloadButton(label="Download Static Plot", value='png_file_path', visible=False),
gr.Button(visible=False)
]
# Get the authentication token
if is_running_in_hf_space():
token = _get_token(request)
payload = token.split('.')[1]
payload = f"{payload}{'=' * ((4 - len(payload) % 4) % 4)}"
payload = json.loads(base64.urlsafe_b64decode(payload).decode())
print(payload)
user = payload['user']
if user == None:
user_type = "anonymous"
elif '[pro]' in user:
user_type = "pro"
else:
user_type = "registered"
print(f"User type: {user_type}")
# Check if a file has been uploaded or if we need to use OpenAlex query
if csv_upload is not None:
print(f"Using uploaded file instead of OpenAlex query: {csv_upload}")
try:
file_extension = os.path.splitext(csv_upload)[1].lower()
if file_extension == '.csv':
# Read the CSV file
records_df = pd.read_csv(csv_upload)
filename = os.path.splitext(os.path.basename(csv_upload))[0]
# Check if this is a DOI-list CSV (single column, named 'doi' or similar)
if (len(records_df.columns) == 1 and records_df.columns[0].lower() in ['doi', 'dois']):
from openalex_utils import get_records_from_dois
doi_list = records_df.iloc[:,0].dropna().astype(str).tolist()
print(f"Detected DOI list with {len(doi_list)} DOIs. Downloading records from OpenAlex...")
records_df = get_records_from_dois(doi_list)
filename = f"doilist_{len(doi_list)}"
else:
# Convert *every* cell that looks like a serialized list/dict
def _try_parse_obj(cell):
if isinstance(cell, str):
txt = cell.strip()
if (txt.startswith('{') and txt.endswith('}')) or (txt.startswith('[') and txt.endswith(']')):
# Try JSON first
try:
return json.loads(txt)
except Exception:
pass
# Fallback to Python-repr (single quotes etc.)
try:
return ast.literal_eval(txt)
except Exception:
pass
return cell
records_df = records_df.map(_try_parse_obj)
print(records_df.head())
else:
error_message = f"Error: Unsupported file type. Please upload a CSV or PKL file."
return create_error_response(error_message)
records_df = process_records_to_df(records_df)
# Make sure we have the required columns
required_columns = ['title', 'abstract', 'publication_year']
missing_columns = [col for col in required_columns if col not in records_df.columns]
if missing_columns:
error_message = f"Error: Uploaded file is missing required columns: {', '.join(missing_columns)}"
return create_error_response(error_message)
print(f"Successfully loaded {len(records_df)} records from uploaded file")
progress(0.2, desc="Processing uploaded data...")
# For uploaded files, set all records to query_index 0
records_df['query_index'] = 0
except Exception as e:
error_message = f"Error processing uploaded file: {str(e)}"
return create_error_response(error_message)
else:
# Check if input is empty or whitespace
print(f"Input: {text_input}")
if not text_input or text_input.isspace():
error_message = "Error: Please enter a valid OpenAlex URL in the 'OpenAlex-search URL'-field or upload a CSV file"
return create_error_response(error_message)
print('Starting data projection pipeline')
progress(0.1, desc="Starting...")
# Split input into multiple URLs if present
urls = [url.strip() for url in text_input.split(';')]
records = []
query_indices = [] # Track which query each record comes from
total_query_length = 0
expected_download_count = 0 # Track expected number of records to download for progress
# Use first URL for filename
first_query, first_params = openalex_url_to_pyalex_query(urls[0])
filename = openalex_url_to_filename(urls[0])
print(f"Filename: {filename}")
# Process each URL
for i, url in enumerate(urls):
query, params = openalex_url_to_pyalex_query(url)
query_length = query.count()
total_query_length += query_length
# Calculate expected download count for this query
if reduce_sample_checkbox and sample_reduction_method == "First n samples":
expected_for_this_query = min(sample_size_slider, query_length)
elif reduce_sample_checkbox and sample_reduction_method == "n random samples":
expected_for_this_query = min(sample_size_slider, query_length)
else: # "All"
expected_for_this_query = query_length
expected_download_count += expected_for_this_query
print(f'Requesting {query_length} entries from query {i+1}/{len(urls)} (expecting to download {expected_for_this_query})...')
# Use PyAlex sampling for random samples - much more efficient!
if reduce_sample_checkbox and sample_reduction_method == "n random samples":
# Use PyAlex's built-in sample method for efficient server-side sampling
target_size = min(sample_size_slider, query_length)
try:
seed_int = int(seed_value) if seed_value.strip() else 42
except ValueError:
seed_int = 42
print(f"Invalid seed value '{seed_value}', using default: 42")
print(f'Attempting PyAlex sampling: {target_size} from {query_length} (seed={seed_int})')
try:
# Check if PyAlex sample method exists and works
if hasattr(query, 'sample'):
sampled_query = query.sample(target_size, seed=seed_int)
# IMPORTANT: When using sample(), must use method='page' for pagination!
sampled_records = []
records_count = 0
for page in sampled_query.paginate(per_page=200, method='page', n_max=None):
for record in page:
sampled_records.append(record)
records_count += 1
progress(0.1 + (0.15 * records_count / target_size),
desc=f"Getting sampled data from query {i+1}/{len(urls)}... ({records_count}/{target_size})")
print(f'PyAlex sampling successful: got {len(sampled_records)} records')
else:
raise AttributeError("sample method not available")
except Exception as e:
print(f"PyAlex sampling failed ({e}), using fallback method...")
# Fallback: get all records and sample manually
all_records = []
records_count = 0
# Use default cursor pagination for non-sampled queries
for page in query.paginate(per_page=200, n_max=None):
for record in page:
all_records.append(record)
records_count += 1
progress(0.1 + (0.15 * records_count / query_length),
desc=f"Downloading for sampling from query {i+1}/{len(urls)}...")
# Now sample manually
if len(all_records) > target_size:
import random
random.seed(seed_int)
sampled_records = random.sample(all_records, target_size)
else:
sampled_records = all_records
print(f'Fallback sampling: got {len(sampled_records)} from {len(all_records)} total')
# Add the sampled records
for idx, record in enumerate(sampled_records):
records.append(record)
query_indices.append(i)
# Safe progress calculation
if expected_download_count > 0:
progress_val = 0.1 + (0.2 * len(records) / expected_download_count)
else:
progress_val = 0.1
progress(progress_val, desc=f"Processing sampled data from query {i+1}/{len(urls)}...")
else:
# Keep existing logic for "First n samples" and "All"
target_size = sample_size_slider if reduce_sample_checkbox and sample_reduction_method == "First n samples" else query_length
records_per_query = 0
print(f"Query {i+1}: target_size={target_size}, query_length={query_length}, method={sample_reduction_method}")
should_break_current_query = False
# For "First n samples", limit the maximum records fetched to avoid over-downloading
max_records_to_fetch = target_size if reduce_sample_checkbox and sample_reduction_method == "First n samples" else None
for page in query.paginate(per_page=200, n_max=max_records_to_fetch):
# Add retry mechanism for processing each page
max_retries = 5
base_wait_time = 1 # Starting wait time in seconds
exponent = 1.5 # Exponential factor
for retry_attempt in range(max_retries):
try:
for record in page:
# Safety check: don't process if we've already reached target
if reduce_sample_checkbox and sample_reduction_method == "First n samples" and records_per_query >= target_size:
print(f"Reached target size before processing: {records_per_query}/{target_size}, breaking from download")
should_break_current_query = True
break
records.append(record)
query_indices.append(i) # Track which query this record comes from
records_per_query += 1
# Safe progress calculation
if expected_download_count > 0:
progress_val = 0.1 + (0.2 * len(records) / expected_download_count)
else:
progress_val = 0.1
progress(progress_val, desc=f"Getting data from query {i+1}/{len(urls)}...")
if reduce_sample_checkbox and sample_reduction_method == "First n samples" and records_per_query >= target_size:
print(f"Reached target size: {records_per_query}/{target_size}, breaking from download")
should_break_current_query = True
break
# If we get here without an exception, break the retry loop
break
except Exception as e:
print(f"Error processing page: {e}")
if retry_attempt < max_retries - 1:
wait_time = base_wait_time * (exponent ** retry_attempt) + random.random()
print(f"Retrying in {wait_time:.2f} seconds (attempt {retry_attempt + 1}/{max_retries})...")
time.sleep(wait_time)
else:
print(f"Maximum retries reached. Continuing with next page.")
# Break out of retry loop if we've reached target
if should_break_current_query:
break
if should_break_current_query:
print(f"Successfully downloaded target size for query {i+1}, moving to next query")
# Continue to next query instead of breaking the entire query loop
continue
# Continue to next query - don't break out of the main query loop
print(f"Query completed in {time.time() - start_time:.2f} seconds")
print(f"Total records collected: {len(records)}")
print(f"Expected to download: {expected_download_count}")
print(f"Available from all queries: {total_query_length}")
print(f"Sample method used: {sample_reduction_method}")
print(f"Reduce sample enabled: {reduce_sample_checkbox}")
if sample_reduction_method == "n random samples":
print(f"Seed value: {seed_value}")
# Process records
processing_start = time.time()
records_df = process_records_to_df(records)
# Add query_index to the dataframe
records_df['query_index'] = query_indices[:len(records_df)]
if reduce_sample_checkbox and sample_reduction_method != "All" and sample_reduction_method != "n random samples":
# Note: We skip "n random samples" here because PyAlex sampling is already done above
sample_size = min(sample_size_slider, len(records_df))
# Check if we have multiple queries for sampling logic
urls = [url.strip() for url in text_input.split(';')] if text_input else ['']
has_multiple_queries = len(urls) > 1 and not csv_upload
# If using categorical coloring with multiple queries, sample each query independently
if treat_as_categorical_checkbox and has_multiple_queries:
# Sample the full sample_size from each query independently
unique_queries = sorted(records_df['query_index'].unique())
sampled_dfs = []
for query_idx in unique_queries:
query_records = records_df[records_df['query_index'] == query_idx]
# Apply the full sample size to each query (only for "First n samples")
current_sample_size = min(sample_size_slider, len(query_records))
if sample_reduction_method == "First n samples":
sampled_query = query_records.iloc[:current_sample_size]
sampled_dfs.append(sampled_query)
print(f"Query {query_idx+1}: sampled {len(sampled_query)} records from {len(query_records)} available")
records_df = pd.concat(sampled_dfs, ignore_index=True)
print(f"Total after independent sampling: {len(records_df)} records")
print(f"Query distribution: {records_df['query_index'].value_counts().sort_index()}")
else:
# Original sampling logic for single query or non-categorical (only "First n samples" now)
if sample_reduction_method == "First n samples":
records_df = records_df.iloc[:sample_size]
print(f"Records processed in {time.time() - processing_start:.2f} seconds")
print(query_indices)
print(records_df)
# Create embeddings - this happens regardless of data source
embedding_start = time.time()
progress(0.3, desc="Embedding Data...")
texts_to_embedd = [f"{title} {abstract}" for title, abstract in zip(records_df['title'], records_df['abstract'])]
if is_running_in_hf_space():
if len(texts_to_embedd) < 2000:
embeddings = create_embeddings_30(texts_to_embedd)
elif len(texts_to_embedd) < 4000 or user_type == "anonymous":
embeddings = create_embeddings_59(texts_to_embedd)
elif len(texts_to_embedd) < 8000:
embeddings = create_embeddings_120(texts_to_embedd)
else:
embeddings = create_embeddings_299(texts_to_embedd)
else:
embeddings = create_embeddings(texts_to_embedd)
print(f"Embeddings created in {time.time() - embedding_start:.2f} seconds")
# Project embeddings
projection_start = time.time()
progress(0.5, desc="Project into UMAP-embedding...")
umap_embeddings = mapper.transform(embeddings)
records_df[['x','y']] = umap_embeddings
print(f"Projection completed in {time.time() - projection_start:.2f} seconds")
# Prepare visualization data
viz_prep_start = time.time()
progress(0.6, desc="Preparing visualization data...")
# Set up colors:
basedata_df['color'] = '#ced4d211'
# Convert highlight_color to hex if it isn't already
if not highlight_color.startswith('#'):
highlight_color = rgba_to_hex(highlight_color)
highlight_color = rgba_to_hex(highlight_color)
print('Highlight color:', highlight_color)
# Check if we have multiple queries and categorical coloring is enabled
# Note: urls was already parsed earlier in the function, so we should use that
has_multiple_queries = len(urls) > 1 and not csv_upload
if treat_as_categorical_checkbox and has_multiple_queries:
# Use categorical coloring for multiple queries
print("Using categorical coloring for multiple queries")
# Get colors from selected colormap or use default categorical colors
unique_queries = sorted(records_df['query_index'].unique())
num_queries = len(unique_queries)
if selected_colormap_name and selected_colormap_name.strip():
try:
# Use selected colormap to generate distinct colors
categorical_cmap = plt.get_cmap(selected_colormap_name)
# Sample colors evenly spaced across the colormap
categorical_colors = [mcolors.to_hex(categorical_cmap(i / max(1, num_queries - 1)))
for i in range(num_queries)]
except Exception as e:
print(f"Warning: Could not load colormap '{selected_colormap_name}' for categorical coloring: {e}")
# Fallback to default categorical colors
categorical_colors = [
"#80418F", # Plum
"#EDA958", # Earth Yellow
"#F35264", # Crayola Red
"#087CA7", # Cerulean
"#FA826B", # Salmon
"#475C8F", # Navy Blue
"#579DA3", # Moonstone Green
"#d61d22", # Bright Red
"#97bb3c", # Lime Green
]
else:
# Use default categorical colors
categorical_colors = [
"#80418F", # Plum
"#EDA958", # Earth Yellow
"#F35264", # Crayola Red
"#087CA7", # Cerulean
"#FA826B", # Salmon
"#475C8F", # Navy Blue
"#579DA3", # Moonstone Green
"#d61d22", # Bright Red
"#97bb3c", # Lime Green
]
# Assign colors based on query_index
query_color_map = {query_idx: categorical_colors[i % len(categorical_colors)]
for i, query_idx in enumerate(unique_queries)}
records_df['color'] = records_df['query_index'].map(query_color_map)
# Add query_label for better identification
records_df['query_label'] = records_df['query_index'].apply(lambda x: f"Query {x+1}")
elif plot_time_checkbox:
# Use selected colormap if provided, otherwise default to haline
if selected_colormap_name and selected_colormap_name.strip():
try:
time_cmap = plt.get_cmap(selected_colormap_name)
except Exception as e:
print(f"Warning: Could not load colormap '{selected_colormap_name}': {e}")
time_cmap = colormaps.haline
else:
time_cmap = colormaps.haline
if not locally_approximate_publication_date_checkbox:
# Create color mapping based on publication years
years = pd.to_numeric(records_df['publication_year'])
norm = mcolors.Normalize(vmin=years.min(), vmax=years.max())
records_df['color'] = [mcolors.to_hex(time_cmap(norm(year))) for year in years]
# Store for legend generation
years_for_legend = years
legend_label = "Publication Year"
legend_cmap = time_cmap
else:
n_neighbors = 10 # Adjust this value to control smoothing
nn = NearestNeighbors(n_neighbors=n_neighbors)
nn.fit(umap_embeddings)
distances, indices = nn.kneighbors(umap_embeddings)
# Calculate local average publication year for each point
local_years = np.array([
np.mean(records_df['publication_year'].iloc[idx])
for idx in indices
])
norm = mcolors.Normalize(vmin=local_years.min(), vmax=local_years.max())
records_df['color'] = [mcolors.to_hex(time_cmap(norm(year))) for year in local_years]
# Store for legend generation
years_for_legend = local_years
legend_label = "Approx. Year"
legend_cmap = time_cmap
else:
# No special coloring - use highlight color
records_df['color'] = highlight_color
stacked_df = pd.concat([basedata_df, records_df], axis=0, ignore_index=True)
stacked_df = stacked_df.fillna("Unlabelled")
stacked_df['parsed_field'] = [get_field(row) for ix, row in stacked_df.iterrows()]
# Create marker size array: basemap points = 2, query result points = 4
marker_sizes = np.concatenate([
np.full(len(basedata_df), 1.), # Basemap points
np.full(len(records_df), 2.5) # Query result points
])
extra_data = pd.DataFrame(stacked_df['doi'])
print(f"Visualization data prepared in {time.time() - viz_prep_start:.2f} seconds")
# Prepare file paths
html_file_name = f"{filename}.html"
html_file_path = static_dir / html_file_name
csv_file_path = static_dir / f"{filename}.csv"
png_file_path = static_dir / f"{filename}.png"
if citation_graph_checkbox:
citation_graph_start = time.time()
citation_graph = create_citation_graph(records_df)
graph_file_name = f"{filename}_citation_graph.jpg"
graph_file_path = static_dir / graph_file_name
draw_citation_graph(citation_graph,path=graph_file_path,bundle_edges=True,
min_max_coordinates=[np.min(stacked_df['x']),np.max(stacked_df['x']),np.min(stacked_df['y']),np.max(stacked_df['y'])])
print(f"Citation graph created and saved in {time.time() - citation_graph_start:.2f} seconds")
# Create and save plot
plot_start = time.time()
progress(0.7, desc="Creating interactive plot...")
# Create a solid black colormap
black_cmap = mcolors.LinearSegmentedColormap.from_list('black', ['#000000', '#000000'])
# Generate legends based on plot type
custom_html = ""
legend_css = ""
if HAS_LEGEND_BUILDERS:
if treat_as_categorical_checkbox and has_multiple_queries:
# Create categorical legend for multiple queries
unique_queries = sorted(records_df['query_index'].unique())
color_mapping = {}
# Get readable names for each query URL
used_names = set() # Track used names to ensure uniqueness
for i, query_idx in enumerate(unique_queries):
try:
if query_idx < len(urls):
readable_name = openalex_url_to_readable_name(urls[query_idx])
print(f"Query {query_idx}: Original readable name: '{readable_name}'")
# Truncate long names for legend display (increased from 25 to 40 chars)
if len(readable_name) > 40:
readable_name = readable_name[:37] + "..."
print(f"Query {query_idx}: Truncated to: '{readable_name}'")
else:
readable_name = f"Query {query_idx + 1}"
except Exception as e:
readable_name = f"Query {query_idx + 1}"
print(f"Query {query_idx}: Exception generating name: {e}")
# Ensure uniqueness - if name is already used, append query number
original_name = readable_name
counter = 1
while readable_name in used_names:
print(f"Query {query_idx}: Name '{readable_name}' already used, making unique...")
readable_name = f"{original_name} ({query_idx + 1})"
if len(readable_name) > 40:
# Re-truncate if needed after adding query number
base_name = original_name[:32] + "..."
readable_name = f"{base_name} ({query_idx + 1})"
counter += 1
used_names.add(readable_name)
color_mapping[readable_name] = query_color_map[query_idx]
print(f"Query {query_idx}: Final legend name: '{readable_name}' -> color: {query_color_map[query_idx]}")
print(f"Final color mapping: {color_mapping}")
legend_html, legend_css = categorical_legend_html_css(
color_mapping,
title="Queries" if len(color_mapping) > 1 else "Query",
anchor="top-left",
container_id="dmp-query-legend"
)
custom_html += legend_html
elif plot_time_checkbox and 'years_for_legend' in locals():
# Create continuous legend for time-based coloring using the stored variables
# Create ticks every 5 years within the range, ignoring endpoints
year_min, year_max = int(years_for_legend.min()), int(years_for_legend.max())
year_range = year_max - year_min
# Find the first multiple of 5 that's greater than year_min
first_tick = ((year_min // 5) + 1) * 5
# Generate ticks every 5 years until we reach year_max
ticks = []
current_tick = first_tick
while current_tick < year_max:
ticks.append(current_tick)
current_tick += 5
# For ranges under 15 years, include both endpoints
if year_range < 15:
if not ticks:
# No 5-year ticks, just show endpoints
ticks = [year_min, year_max]
else:
# Add endpoints to existing 5-year ticks
if year_min not in ticks:
ticks.insert(0, year_min)
if year_max not in ticks:
ticks.append(year_max)
legend_html, legend_css = continuous_legend_html_css(
legend_cmap,
year_min,
year_max,
ticks=ticks,
label=legend_label,
anchor="top-right",
container_id="dmp-year-legend"
)
custom_html += legend_html
# Add custom CSS to make legend titles equally large and bold
legend_title_css = """
/* Make all legend titles equally large and bold */
#dmp-query-legend .legend-title,
#dmp-year-legend .colorbar-label {
font-size: 16px !important;
font-weight: bold !important;
font-family: 'Roboto Condensed', sans-serif !important;
}
"""
# Combine legend CSS with existing custom CSS
combined_css = DATAMAP_CUSTOM_CSS + "\n" + legend_css + "\n" + legend_title_css
plot = datamapplot.create_interactive_plot(
stacked_df[['x','y']].values,
np.array(stacked_df['cluster_2_labels']),
np.array(['Unlabelled' if pd.isna(x) else x for x in stacked_df['parsed_field']]),
hover_text=[str(row['title']) for ix, row in stacked_df.iterrows()],
marker_color_array=stacked_df['color'],
marker_size_array=marker_sizes,
use_medoids=True, # Switch back once efficient mediod caclulation comes out!
width=1000,
height=1000,
# point_size_scale=1.5,
point_radius_min_pixels=1,
text_outline_width=5,
point_hover_color=highlight_color,
point_radius_max_pixels=5,
cmap=black_cmap,
background_image=graph_file_name if citation_graph_checkbox else None,
#color_label_text=False,
font_family="Roboto Condensed",
font_weight=600,
tooltip_font_weight=600,
tooltip_font_family="Roboto Condensed",
extra_point_data=extra_data,
on_click="window.open(`{doi}`)",
custom_html=custom_html,
custom_css=combined_css,
initial_zoom_fraction=.8,
enable_search=False,
offline_mode=False
)
# Save plot
plot.save(html_file_path)
print(f"Plot created and saved in {time.time() - plot_start:.2f} seconds")
# Save additional files if requested
if download_csv_checkbox:
# Export relevant column
export_df = records_df[['title', 'abstract', 'doi', 'publication_year', 'x', 'y','id','primary_topic']]
export_df['parsed_field'] = [get_field(row) for ix, row in export_df.iterrows()]
export_df['referenced_works'] = [', '.join(x) for x in records_df['referenced_works']]
# Add query information if categorical coloring is used
if treat_as_categorical_checkbox and has_multiple_queries:
export_df['query_index'] = records_df['query_index']
export_df['query_label'] = records_df['query_label']
if locally_approximate_publication_date_checkbox and plot_type_dropdown == "Time-based coloring" and 'years_for_legend' in locals():
export_df['approximate_publication_year'] = years_for_legend
export_df.to_csv(csv_file_path, index=False)
if download_png_checkbox:
png_start_time = time.time()
print("Starting PNG generation...")
# Sample and prepare data
sample_prep_start = time.time()
sample_to_plot = basedata_df#.sample(20000)
labels1 = np.array(sample_to_plot['cluster_2_labels'])
labels2 = np.array(['Unlabelled' if pd.isna(x) else x for x in sample_to_plot['parsed_field']])
ratio = 0.6
mask = np.random.random(size=len(labels1)) < ratio
combined_labels = np.where(mask, labels1, labels2)
# Get the 30 most common labels
unique_labels, counts = np.unique(combined_labels, return_counts=True)
top_30_labels = set(unique_labels[np.argsort(counts)[-80:]])
# Replace less common labels with 'Unlabelled'
combined_labels = np.array(['Unlabelled' if label not in top_30_labels else label for label in combined_labels])
colors_base = ['#536878' for _ in range(len(labels1))]
print(f"Sample preparation completed in {time.time() - sample_prep_start:.2f} seconds")
# Create main plot
main_plot_start = time.time()
fig, ax = datamapplot.create_plot(
sample_to_plot[['x','y']].values,
combined_labels,
label_wrap_width=12,
label_over_points=True,
dynamic_label_size=True,
use_medoids=True, # Switch back once efficient mediod caclulation comes out!
point_size=2,
marker_color_array=colors_base,
force_matplotlib=True,
max_font_size=12,
min_font_size=4,
min_font_weight=100,
max_font_weight=300,
font_family="Roboto Condensed",
color_label_text=False, add_glow=False,
highlight_labels=list(np.unique(labels1)),
label_font_size=8,
highlight_label_keywords={"fontsize": 12, "fontweight": "bold", "bbox":{"boxstyle":"circle", "pad":0.75,'alpha':0.}},
)
print(f"Main plot creation completed in {time.time() - main_plot_start:.2f} seconds")
if citation_graph_checkbox:
# Read and add the graph image
graph_img = plt.imread(graph_file_path)
ax.imshow(graph_img, extent=[np.min(stacked_df['x']),np.max(stacked_df['x']),np.min(stacked_df['y']),np.max(stacked_df['y'])],
alpha=0.9, aspect='auto')
if len(records_df) > 50_000:
point_size = .5
elif len(records_df) > 10_000:
point_size = 1
else:
point_size = 5
# Time-based visualization
scatter_start = time.time()
if plot_type_dropdown == "Time-based coloring":
# Use selected colormap if provided, otherwise default to haline
if selected_colormap_name and selected_colormap_name.strip():
try:
static_cmap = plt.get_cmap(selected_colormap_name)
except Exception as e:
print(f"Warning: Could not load colormap '{selected_colormap_name}': {e}")
static_cmap = colormaps.haline
else:
static_cmap = colormaps.haline
if locally_approximate_publication_date_checkbox and 'years_for_legend' in locals():
scatter = plt.scatter(
umap_embeddings[:,0],
umap_embeddings[:,1],
c=years_for_legend,
cmap=static_cmap,
alpha=0.8,
s=point_size
)
else:
years = pd.to_numeric(records_df['publication_year'])
scatter = plt.scatter(
umap_embeddings[:,0],
umap_embeddings[:,1],
c=years,
cmap=static_cmap,
alpha=0.8,
s=point_size
)
plt.colorbar(scatter, shrink=0.5, format='%d')
else:
scatter = plt.scatter(
umap_embeddings[:,0],
umap_embeddings[:,1],
c=records_df['color'],
alpha=0.8,
s=point_size
)
# Add legend for categorical coloring (not time-based)
if plot_type_dropdown != "Time-based coloring" and treat_as_categorical_checkbox and has_multiple_queries:
# Get unique categories and their colors from the color mapping dict
unique_categories = records_df['query_index'].unique()
# Create legend handles with larger point size using the color mapping
legend_handles = []
for query_idx in sorted(unique_categories):
# Get the readable name for this query
try:
if query_idx < len(urls):
readable_name = openalex_url_to_readable_name(urls[query_idx])
# Truncate long names for legend display
if len(readable_name) > 40:
readable_name = readable_name[:37] + "..."
else:
readable_name = f"Query {query_idx + 1}"
except Exception as e:
readable_name = f"Query {query_idx + 1}"
color = query_color_map[query_idx]
legend_handles.append(plt.Line2D([0], [0], marker='o', color='w',
markerfacecolor=color, markersize=9,
label=readable_name, linestyle='None'))
# Add legend in upper left corner
plt.legend(handles=legend_handles, loc='upper left', frameon=False,
fancybox=False, shadow=False, framealpha=0.9, fontsize=9,
#prop={'weight': 'bold'}
)
print(f"Scatter plot creation completed in {time.time() - scatter_start:.2f} seconds")
# Save plot
save_start = time.time()
plt.axis('off')
plt.savefig(png_file_path, dpi=300, bbox_inches='tight')
plt.close()
print(f"Plot saving completed in {time.time() - save_start:.2f} seconds")
print(f"Total PNG generation completed in {time.time() - png_start_time:.2f} seconds")
progress(1.0, desc="Done!")
print(f"Total pipeline completed in {time.time() - start_time:.2f} seconds")
iframe = f"""<iframe src="{html_file_path}" width="100%" height="1000px"></iframe>"""
# Return iframe and download buttons with appropriate visibility
return [
iframe,
gr.DownloadButton(label="Download Interactive Visualization", value=html_file_path, visible=True, variant='secondary'),
gr.DownloadButton(label="Download CSV Data", value=csv_file_path, visible=download_csv_checkbox, variant='secondary'),
gr.DownloadButton(label="Download Static Plot", value=png_file_path, visible=download_png_checkbox, variant='secondary'),
gr.Button(visible=False) # Return hidden state for cancel button
]
predict.zerogpu = True
theme = gr.themes.Monochrome(
font=[gr.themes.GoogleFont("Roboto Condensed"), "ui-sans-serif", "system-ui", "sans-serif"],
text_size="lg",
).set(
button_secondary_background_fill="white",
button_secondary_background_fill_hover="#f3f4f6",
button_secondary_border_color="black",
button_secondary_text_color="black",
button_border_width="2px",
)
# JS to enforce light theme by refreshing the page
js_light = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
# Gradio interface setup
with gr.Blocks(theme=theme, css=f"""
.gradio-container a {{
color: black !important;
text-decoration: none !important; /* Force remove default underline */
font-weight: bold;
transition: color 0.2s ease-in-out, border-bottom-color 0.2s ease-in-out;
display: inline-block; /* Enable proper spacing for descenders */
line-height: 1.1; /* Adjust line height */
padding-bottom: 2px; /* Add space for descenders */
}}
.gradio-container a:hover {{
color: #b23310 !important;
border-bottom: 3px solid #b23310; /* Wider underline, only on hover */
}}
/* Colormap chooser styles */
{colormap_chooser.css()}
""", js=js_light) as demo:
gr.Markdown("""
<div style="max-width: 100%; margin: 0 auto;">
<br>
# OpenAlex Mapper
OpenAlex Mapper is a way of projecting search queries from the amazing OpenAlex database on a background map of randomly sampled papers from OpenAlex, which allows you to easily investigate interdisciplinary connections. OpenAlex Mapper was developed by [Maximilian Noichl](https://maxnoichl.eu) and [Andrea Loettgers](https://unige.academia.edu/AndreaLoettgers) at the [Possible Life project](http://www.possiblelife.eu/).
To use OpenAlex Mapper, first head over to [OpenAlex](https://openalex.org/) and search for something that interests you. For example, you could search for all the papers that make use of the [Kuramoto model](https://openalex.org/works?page=1&filter=default.search%3A%22Kuramoto%20Model%22), for all the papers that were published by researchers at [Utrecht University in 2019](https://openalex.org/works?page=1&filter=authorships.institutions.lineage%3Ai193662353,publication_year%3A2019), or for all the papers that cite Wittgenstein's [Philosophical Investigations](https://openalex.org/works?page=1&filter=cites%3Aw4251395411). Then you copy the URL to that search query into the OpenAlex search URL box below and click "Run Query." It will download all of these records from OpenAlex and embed them on our interactive map. As the embedding step is a little expensive, computationally, it's often a good idea to play around with smaller samples, before running a larger analysis (see below for a note on sample size and gpu-limits). After a little time, that map will appear and be available for you to interact with and download. You can find more explanations in the FAQs below.
</div>
""")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
run_btn = gr.Button("Run Query", variant='primary')
cancel_btn = gr.Button("Cancel", visible=False, variant='secondary')
# Create separate download buttons
html_download = gr.DownloadButton("Download Interactive Visualization", visible=False, variant='secondary')
csv_download = gr.DownloadButton("Download CSV Data", visible=False, variant='secondary')
png_download = gr.DownloadButton("Download Static Plot", visible=False, variant='secondary')
text_input = gr.Textbox(label="OpenAlex-search URL",
info="Enter the URL to an OpenAlex-search.")
# Add the query highlight display
query_display = gr.HTML(
value="<div style='padding: 10px; color: #666; font-style: italic;'>Enter OpenAlex URLs separated by semicolons to see query descriptions</div>",
label="",
show_label=False
)
gr.Markdown("### Sample Settings")
reduce_sample_checkbox = gr.Checkbox(
label="Reduce Sample Size",
value=True,
info="Reduce sample size."
)
sample_reduction_method = gr.Dropdown(
["All", "First n samples", "n random samples"],
label="Sample Selection Method",
value="First n samples",
info="How to choose the samples to keep.",
visible=True # Will be controlled by reduce_sample_checkbox
)
if is_running_in_hf_zero_gpu():
max_sample_size = 20000
else:
max_sample_size = 250000
sample_size_slider = gr.Slider(
label="Sample Size",
minimum=500,
maximum=max_sample_size,
step=10,
value=1000,
info="How many samples to keep.",
visible=True # Will be controlled by reduce_sample_checkbox
)
# Add this new seed field
seed_textbox = gr.Textbox(
label="Random Seed",
value="42",
info="Seed for random sampling reproducibility.",
visible=False # Will be controlled by both reduce_sample_checkbox and sample_reduction_method
)
gr.Markdown("### Plot Settings")
# Replace plot_time_checkbox with a dropdown
plot_type_dropdown = gr.Dropdown(
["No special coloring", "Time-based coloring", "Categorical coloring"],
label="Plot Coloring Type",
value="Time-based coloring",
info="Choose how to color the points on the plot."
)
locally_approximate_publication_date_checkbox = gr.Checkbox(
label="Locally Approximate Publication Date",
value=True,
info="Colour points by the average publication date in their area.",
visible=True # Will be controlled by plot_type_dropdown
)
# Remove treat_as_categorical_checkbox since it's now part of the dropdown
gr.Markdown("### Download Options")
download_csv_checkbox = gr.Checkbox(
label="Generate CSV Export",
value=False,
info="Export the data as CSV file"
)
download_png_checkbox = gr.Checkbox(
label="Generate Static PNG Plot",
value=False,
info="Export a static PNG visualization. This will make things slower!"
)
gr.Markdown("### Citation graph")
citation_graph_checkbox = gr.Checkbox(
label="Add Citation Graph",
value=False,
info="Adds a citation graph of the sample to the plot."
)
gr.Markdown("### Upload Your Own Data")
csv_upload = gr.File(
file_count="single",
label="Upload your own CSV file downloaded via pyalex.",
file_types=[".csv"],
)
# --- Aesthetics Accordion ---
with gr.Accordion("Aesthetics", open=False):
gr.Markdown("### Color Selection")
gr.Markdown("*Choose an individual color to highlight your data.*")
highlight_color_picker = gr.ColorPicker(
label="Highlight Color",
show_label=False,
value="#5e2784",
#info="Choose the highlight color for your query points."
)
# Add colormap chooser
gr.Markdown("### Colormap Selection")
gr.Markdown("*Choose a colormap for time-based visualizations (when 'Plot Time' is enabled)*")
# Render the colormap chooser (created earlier)
colormap_chooser.render_tabs()
with gr.Column(scale=2):
html = gr.HTML(
value='<div style="width: 100%; height: 1000px; display: flex; justify-content: center; align-items: center; border: 1px solid #ccc; background-color: #f8f9fa;"><p style="font-size: 1.2em; color: #666;">The visualization map will appear here after running a query</p></div>',
label="",
show_label=False
)
gr.Markdown("""
<div style="max-width: 100%; margin: 0 auto;">
# FAQs
## Who made this?
This project was developed by [Maximilian Noichl](https://maxnoichl.eu) (Utrecht University), in cooperation with Andrea Loettgers and Tarja Knuuttila at the [Possible Life project](http://www.possiblelife.eu/), at the University of Vienna. If this project is useful in any way for your research, we would appreciate citation of:
Noichl, M., Loettgers, A., Knuuttila, T. (2025).[Philosophy at Scale: Introducing OpenAlex Mapper](https://maxnoichl.eu/full/talks/talk_BERLIN_April_2025/working_paper.pdf). *Working Paper*.
This project received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme (LIFEMODE project, grant agreement No. 818772).
## How does it work?
The base map for this project is developed by randomly downloading 250,000 articles from OpenAlex, then embedding their abstracts using our [fine-tuned](https://huggingface.co/m7n/discipline-tuned_specter_2_024) version of the [specter-2](https://huggingface.co/allenai/specter2_aug2023refresh_base) language model, running these embeddings through [UMAP](https://umap-learn.readthedocs.io/en/latest/) to give us a two-dimensional representation, and displaying that in an interactive window using [datamapplot](https://datamapplot.readthedocs.io/en/latest/index.html). After the data for your query is downloaded from OpenAlex, it then undergoes the exact same process, but the pre-trained UMAP model from earlier is used to project your new data points onto this original map, showing where they would show up if they were included in the original sample. For more details, you can take a look at the method section of this [working paper](https://maxnoichl.eu/full/talks/talk_BERLIN_April_2025/working_paper.pdf).
## I'm getting an "out of GPU credits" error.
Running the embedding process requires an expensive A100 GPU. To provide this, we make use of HuggingFace's ZeroGPU service. As an anonymous user, this entitles you to one minute of GPU runtime, which is enough for several small queries of around a thousand records every day. If you create a free account on HuggingFace, this should increase to five minutes of runtime, allowing you to run successful queries of up to 10,000 records at a time. If you need more, there's always the option to either buy a HuggingFace Pro subscription for roughly ten dollars a month (entitling you to 25 minutes of runtime every day) or get in touch with us to run the pipeline outside of the HuggingFace environment.
## I want to add multiple queries at once!
That can be a good idea, e. g. if your interested in a specific paper, as well as all the papers that cite it. Just add the queries to the query box and separate them with a ";" without any spaces in between!
## I think I found a mistake in the map.
There are various considerations to take into account when working with this map:
1. The language model we use is fine-tuned to separate disciplines from each other, but of course, disciplines are weird, partially subjective social categories, so what the model has learned might not always correspond perfectly to what you would expect to see.
2. When pressing down a really high-dimensional space into a low-dimensional one, there will be trade-offs. For example, we see this big ring structure of the sciences on the map, but in the middle of the map there is a overly stretchedstring of bioinformaticsthat stretches from computer science at the bottom up to the life sciences clusters at the top. This is one of the areas where the UMAP algorithm had trouble pressing our high-dimensional dataset into a low-dimensional space. For more information on how to read a UMAP plot, I recommend looking into ["Understanding UMAP"](https://pair-code.github.io/understanding-umap/) by Andy Coenen & Adam Pearce.
3. Finally, the labels we're using for the regions of this plot are created from OpenAlex's own labels of sub-disciplines. They give a rough indication of the papers that could be expected in this broad area of the map, but they are not necessarily the perfect label for the articles that are precisely below them. They are just located at the median point of a usually much larger, much broader, and fuzzier category, so they should always be taken with quite a big grain of salt.
## I want to use my own data!
Sure! You can upload csv-files produced by downloading records from OpenAlex using the pyalex package. You will need to provide at least the columns `id`, `title`, `publication_year`, `doi`, `abstract` or `abstract_inverted_index`, `referenced_works` and `primary_topic`. Alternatively, you can upload a csv-file with only the column `doi`, containing a column of DOIs. These will then be used to download the records from OpenAlex and then embed them on the map.
</div>
""")
# Update the visibility control functions
def update_sample_controls_visibility(reduce_sample_enabled, sample_method):
"""Update visibility of sample reduction controls based on checkbox and method"""
method_visible = reduce_sample_enabled
slider_visible = reduce_sample_enabled and sample_method != "All"
seed_visible = reduce_sample_enabled and sample_method == "n random samples"
return (
gr.Dropdown(visible=method_visible),
gr.Slider(visible=slider_visible),
gr.Textbox(visible=seed_visible)
)
def update_plot_controls_visibility(plot_type):
"""Update visibility of plot controls based on plot type"""
locally_approx_visible = plot_type == "Time-based coloring"
return gr.Checkbox(visible=locally_approx_visible)
# Update event handlers
reduce_sample_checkbox.change(
fn=update_sample_controls_visibility,
inputs=[reduce_sample_checkbox, sample_reduction_method],
outputs=[sample_reduction_method, sample_size_slider, seed_textbox]
)
sample_reduction_method.change(
fn=update_sample_controls_visibility,
inputs=[reduce_sample_checkbox, sample_reduction_method],
outputs=[sample_reduction_method, sample_size_slider, seed_textbox]
)
plot_type_dropdown.change(
fn=update_plot_controls_visibility,
inputs=[plot_type_dropdown],
outputs=[locally_approximate_publication_date_checkbox]
)
def show_cancel_button():
return gr.Button(visible=True)
def hide_cancel_button():
return gr.Button(visible=False)
show_cancel_button.zerogpu = True
hide_cancel_button.zerogpu = True
predict.zerogpu = True
# Update the run button click event
run_event = run_btn.click(
fn=show_cancel_button,
outputs=cancel_btn,
queue=False
).then(
fn=predict,
inputs=[
text_input,
sample_size_slider,
reduce_sample_checkbox,
sample_reduction_method,
plot_type_dropdown, # Changed from plot_time_checkbox
locally_approximate_publication_date_checkbox,
# Removed treat_as_categorical_checkbox since it's now part of plot_type_dropdown
download_csv_checkbox,
download_png_checkbox,
citation_graph_checkbox,
csv_upload,
highlight_color_picker,
colormap_chooser.selected_name,
seed_textbox
],
outputs=[html, html_download, csv_download, png_download, cancel_btn]
)
# Add cancel button click event
cancel_btn.click(
fn=hide_cancel_button,
outputs=cancel_btn,
cancels=[run_event],
queue=False # Important to make the button hide immediately
)
# Connect text input changes to query display updates
text_input.change(
fn=highlight_queries,
inputs=text_input,
outputs=query_display
)
# demo.static_dirs = {
# "static": str(static_dir)
# }
# Mount and run app
# app = gr.mount_gradio_app(app, demo, path="/",ssr_mode=False)
# app.zerogpu = True # Add this line
# if __name__ == "__main__":
# demo.launch(server_name="0.0.0.0", server_port=7860, share=True,allowed_paths=["/static"])
# Mount Gradio app to FastAPI
if is_running_in_hf_space():
app = gr.mount_gradio_app(app, demo, path="/",ssr_mode=False) # setting to false for now.
else:
app = gr.mount_gradio_app(app, demo, path="/",ssr_mode=False)
# Run both servers
if __name__ == "__main__":
if is_running_in_hf_space():
# For HF Spaces, use SSR mode
os.environ["GRADIO_SSR_MODE"] = "True"
uvicorn.run("app:app", host="0.0.0.0", port=7860)
else:
uvicorn.run(app, host="0.0.0.0", port=7860)
|