import os import threading import gradio as gr from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, ) MODEL_NAME = "MaxLSB/LeCarnet-8M" hf_token = os.environ["HUGGINGFACEHUB_API_TOKEN"] # Load tokenizer & model locally tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=hf_token) model.eval() def respond( prompt: str, chat_history, max_tokens: int, temperature: float, top_p: float, ): inputs = tokenizer(prompt, return_tensors="pt") streamer = TextIteratorStreamer( tokenizer, skip_prompt=True, skip_special_tokens=True, ) generate_kwargs = dict( **inputs, streamer=streamer, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, eos_token_id=tokenizer.eos_token_id, ) thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) thread.start() accumulated = "" for new_text in streamer: accumulated += new_text yield accumulated # Wire it up in Gradio demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Slider(1, 512, value=512, step=1, label="Max new tokens"), gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top‑p"), ], title="LeCarnet-8M: Short French Stories", description="Type the beginning of a sentence and watch the model finish it.", examples=[ ["Il était une fois un petit garçon"], ], ) if __name__ == "__main__": demo.launch()