import os import torch import threading import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # Hugging Face token hf_token = os.environ["HUGGINGFACEHUB_API_TOKEN"] torch.set_num_threads(4) # Globals tokenizer = None model = None current_model_name = None # Load selected model def load_model(model_name): global tokenizer, model, current_model_name full_model_name = f"MaxLSB/{model_name}" tokenizer = AutoTokenizer.from_pretrained(full_model_name, token=hf_token) model = AutoModelForCausalLM.from_pretrained(full_model_name, token=hf_token) model.eval() current_model_name = model_name # Initialize default model load_model("LeCarnet-8M") # Streaming generation function def respond(message, max_tokens, temperature, top_p): inputs = tokenizer(message, return_tensors="pt") streamer = TextIteratorStreamer(tokenizer, skip_prompt=False, skip_special_tokens=True) generate_kwargs = dict( **inputs, streamer=streamer, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, eos_token_id=tokenizer.eos_token_id, ) def run(): with torch.no_grad(): model.generate(**generate_kwargs) thread = threading.Thread(target=run) thread.start() response = "" for new_text in streamer: response += new_text # prepend model name on its own line yield f"**Model: {current_model_name}**\n\n{response}" # User input handler def user(message, chat_history): chat_history.append([message, None]) return "", chat_history # Bot response handler def bot(chatbot, max_tokens, temperature, top_p): message = chatbot[-1][0] response_generator = respond(message, max_tokens, temperature, top_p) for response in response_generator: chatbot[-1][1] = response yield chatbot # Model selector handler def update_model(model_name): load_model(model_name) return [] # Gradio UI with gr.Blocks(title="LeCarnet - Chat Interface") as demo: with gr.Row(): gr.HTML("""