LeCarnet-Demo / app.py
MaxLSB's picture
Update app.py
e82c074 verified
raw
history blame
1.63 kB
import os
import threading
import gradio as gr
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
)
MODEL_NAME = "MaxLSB/LeCarnet-8M"
# Load tokenizer & model locally
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
model.eval()
def respond(
prompt: str,
chat_history,
max_tokens: int,
temperature: float,
top_p: float,
):
inputs = tokenizer(prompt, return_tensors="pt")
# Text streamer to get one token at a time
streamer = TextIteratorStreamer(
tokenizer,
skip_prompt=True,
skip_special_tokens=True,
)
generate_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
)
# Kick off generation in background
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
# Stream out partial completions
accumulated = ""
for new_text in streamer:
accumulated += new_text
yield accumulated
# Wire it up in Gradio
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Slider(1, 512, value=128, step=1, label="Max new tokens"),
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top‑p"),
],
title="Prefix Completion Demo",
description="Type the beginning of a sentence and watch the model finish it.",
)
if __name__ == "__main__":
demo.launch()