Spaces:
Sleeping
Sleeping
import os | |
import threading | |
import gradio as gr | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
) | |
MODEL_NAME = "MaxLSB/LeCarnet-8M" | |
# Load tokenizer & model locally | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) | |
model.eval() | |
def respond( | |
prompt: str, | |
chat_history, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
# Text streamer to get one token at a time | |
streamer = TextIteratorStreamer( | |
tokenizer, | |
skip_prompt=True, | |
skip_special_tokens=True, | |
) | |
generate_kwargs = dict( | |
**inputs, | |
streamer=streamer, | |
max_new_tokens=max_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
# Kick off generation in background | |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
# Stream out partial completions | |
accumulated = "" | |
for new_text in streamer: | |
accumulated += new_text | |
yield accumulated | |
# Wire it up in Gradio | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Slider(1, 512, value=128, step=1, label="Max new tokens"), | |
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top‑p"), | |
], | |
title="Prefix Completion Demo", | |
description="Type the beginning of a sentence and watch the model finish it.", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |