Spaces:
Sleeping
Sleeping
import os | |
import threading | |
import gradio as gr | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
) | |
# Configuration | |
MODEL_NAMES = ["LeCarnet-3M", "LeCarnet-8M", "LeCarnet-21M"] | |
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
MEDIA_PATH = "media/le-carnet.png" # Relative path to logo | |
# Pre-load all tokenizers and models | |
models = {} | |
tokenizers = {} | |
for name in MODEL_NAMES: | |
hub_id = f"MaxLSB/LeCarnet-{name.split('-')[-1]}M" | |
tokenizers[name] = AutoTokenizer.from_pretrained(hub_id, token=HF_TOKEN) | |
models[name] = AutoModelForCausalLM.from_pretrained(hub_id, token=HF_TOKEN) | |
models[name].eval() | |
def respond( | |
prompt: str, | |
chat_history, | |
selected_model: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
""" | |
Generate a streaming response from the chosen LeCarnet model, | |
prepending the logo and model name in the chat bubble. | |
""" | |
tokenizer = tokenizers[selected_model] | |
model = models[selected_model] | |
inputs = tokenizer(prompt, return_tensors="pt") | |
streamer = TextIteratorStreamer( | |
tokenizer, | |
skip_prompt=False, | |
skip_special_tokens=True, | |
) | |
generate_kwargs = dict( | |
**inputs, | |
streamer=streamer, | |
max_new_tokens=max_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
# Start generation in background thread | |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
prefix = f"<img src='{MEDIA_PATH}' alt='logo' width='20' style='vertical-align: middle;'/> <strong>{selected_model}</strong>: " | |
accumulated = "" | |
first = True | |
for new_text in streamer: | |
if first: | |
# include prefix only once at start | |
accumulated = prefix + new_text | |
first = False | |
else: | |
accumulated += new_text | |
yield accumulated | |
# Build Gradio ChatInterface | |
with gr.Blocks() as demo: | |
gr.Markdown("# LeCarnet: Short French Stories") | |
with gr.Row(): | |
with gr.Column(): | |
chat = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Dropdown(MODEL_NAMES, value="LeCarnet-8M", label="Model"), | |
gr.Slider(1, 512, value=512, step=1, label="Max new tokens"), | |
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top‑p"), | |
], | |
title="LeCarnet Chat", | |
description="Type the beginning of a sentence and watch the model finish it.", | |
examples=[ | |
["Il était une fois un petit garçon qui vivait dans un village paisible."], | |
["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."], | |
["Il était une fois un petit lapin perdu"], | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch() | |