Spaces:
Sleeping
Sleeping
import os | |
import threading | |
from collections import defaultdict | |
import gradio as gr | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
) | |
# Define model paths | |
model_name_to_path = { | |
"LeCarnet-3M": "MaxLSB/LeCarnet-3M", | |
"LeCarnet-8M": "MaxLSB/LeCarnet-8M", | |
"LeCarnet-21M": "MaxLSB/LeCarnet-21M", | |
} | |
# Load Hugging Face token | |
hf_token = os.environ["HUGGINGFACEHUB_API_TOKEN"] | |
# Preload models and tokenizers | |
loaded_models = defaultdict(dict) | |
for name, path in model_name_to_path.items(): | |
loaded_models[name]["tokenizer"] = AutoTokenizer.from_pretrained(path, token=hf_token) | |
loaded_models[name]["model"] = AutoModelForCausalLM.from_pretrained(path, token=hf_token) | |
loaded_models[name]["model"].eval() | |
def respond(message, history, model_name, max_tokens, temperature, top_p): | |
""" | |
Generate a response from the selected model, streaming the output and updating chat history. | |
Args: | |
message (str): User's input message. | |
history (list): Current chat history as list of (user_msg, bot_msg) tuples. | |
model_name (str): Selected model name. | |
max_tokens (int): Maximum number of tokens to generate. | |
temperature (float): Sampling temperature. | |
top_p (float): Top-p sampling parameter. | |
Yields: | |
list: Updated chat history with the user's message and streaming bot response. | |
""" | |
# Append user's message to history with an empty bot response | |
history = history + [(message, "")] | |
yield history # Display user's message immediately | |
# Select tokenizer and model | |
tokenizer = loaded_models[model_name]["tokenizer"] | |
model = loaded_models[model_name]["model"] | |
# Tokenize input | |
inputs = tokenizer(message, return_tensors="pt") | |
# Set up streaming | |
streamer = TextIteratorStreamer( | |
tokenizer, | |
skip_prompt=False, | |
skip_special_tokens=True, | |
) | |
# Configure generation parameters | |
generate_kwargs = dict( | |
**inputs, | |
streamer=streamer, | |
max_new_tokens=max_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
# Start generation in a background thread | |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
# Stream the response with model name prefix | |
accumulated = f"**{model_name}:** " | |
for new_text in streamer: | |
accumulated += new_text | |
history[-1] = (message, accumulated) | |
yield history | |
def submit(message, history, model_name, max_tokens, temperature, top_p): | |
""" | |
Handle form submission by calling respond and clearing the input box. | |
Args: | |
message (str): User's input message. | |
history (list): Current chat history. | |
model_name (str): Selected model name. | |
max_tokens (int): Max tokens parameter. | |
temperature (float): Temperature parameter. | |
top_p (float): Top-p parameter. | |
Yields: | |
tuple: (updated chat history, cleared user input) | |
""" | |
for updated_history in respond(message, history, model_name, max_tokens, temperature, top_p): | |
yield updated_history, "" | |
def select_model(model_name, current_model): | |
""" | |
Update the selected model name when a model button is clicked. | |
Args: | |
model_name (str): The model name to select. | |
current_model (str): The currently selected model. | |
Returns: | |
str: The newly selected model name. | |
""" | |
return model_name | |
# Create the Gradio interface with Blocks | |
with gr.Blocks(css=".gr-button {margin: 5px; width: 100%;} .gr-column {padding: 10px;}") as demo: | |
# Title and description | |
gr.Markdown("# LeCarnet") | |
gr.Markdown("Select a model on the right and type a message to chat.") | |
# Two-column layout with specific widths | |
with gr.Row(): | |
# Left column: Chat interface (80% width) | |
with gr.Column(scale=4): | |
chatbot = gr.Chatbot( | |
avatar_images=(None, "media/le-carnet.png"), # User avatar: None, Bot avatar: Logo | |
label="Chat", | |
height=600, # Increase chat height for larger display | |
) | |
user_input = gr.Textbox(placeholder="Type your message here...", label="Message") | |
submit_btn = gr.Button("Send") | |
# Right column: Model selection and parameters (20% width) | |
with gr.Column(scale=1, min_width=200): | |
# State to track selected model | |
model_state = gr.State(value="LeCarnet-8M") | |
# Model selection buttons | |
gr.Markdown("**Select Model**") | |
btn_3m = gr.Button("LeCarnet-3M") | |
btn_8m = gr.Button("LeCarnet-8M") | |
btn_21m = gr.Button("LeCarnet-21M") | |
# Sliders for parameters | |
max_tokens = gr.Slider(1, 512, value=512, step=1, label="Max New Tokens") | |
temperature = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p") | |
# Example prompts | |
examples = gr.Examples( | |
examples=[ | |
["Il était une fois un petit garçon qui vivait dans un village paisible."], | |
["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."], | |
["Il était une fois un petit lapin perdu"], | |
], | |
inputs=user_input, | |
) | |
# Event handling for submit button | |
submit_btn.click( | |
fn=submit, | |
inputs=[user_input, chatbot, model_state, max_tokens, temperature, top_p], | |
outputs=[chatbot, user_input], | |
) | |
# Event handling for model selection buttons | |
btn_3m.click( | |
fn=select_model, | |
inputs=[gr.State("LeCarnet-3M"), model_state], | |
outputs=model_state, | |
) | |
btn_8m.click( | |
fn=select_model, | |
inputs=[gr.State("LeCarnet-8M"), model_state], | |
outputs=model_state, | |
) | |
btn_21m.click( | |
fn=select_model, | |
inputs=[gr.State("LeCarnet-21M"), model_state], | |
outputs=model_state, | |
) | |
if __name__ == "__main__": | |
demo.queue(default_concurrency_limit=10, max_size=10).launch(ssr_mode=False, max_threads=10) |