LeCarnet-Demo / app.py
MaxLSB's picture
Update app.py
0a364b2 verified
raw
history blame
1.93 kB
import os
import threading
import gradio as gr
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
)
MODEL_NAME = "MaxLSB/LeCarnet-8M"
hf_token = os.environ["HUGGINGFACEHUB_API_TOKEN"]
# Load tokenizer & model locally
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=hf_token)
model.eval()
def respond(
prompt: str,
chat_history,
max_tokens: int,
temperature: float,
top_p: float,
):
inputs = tokenizer(prompt, return_tensors="pt")
streamer = TextIteratorStreamer(
tokenizer,
skip_prompt=False,
skip_special_tokens=True,
)
generate_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
eos_token_id=tokenizer.eos_token_id,
)
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
accumulated = ""
for new_text in streamer:
accumulated += new_text
yield accumulated
# Wire it up in Gradio
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Slider(1, 512, value=512, step=1, label="Max new tokens"),
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top‑p"),
],
title="LeCarnet-8M",
description="Type the beginning of a sentence and watch the model finish it.",
examples = [
["Il était une fois un petit garçon qui vivait dans un village paisible."],
["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."],
["Il était une fois un petit lapin perdu"],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.queue()
demo.launch()