import gradio as gr from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import spacy import zipfile # Estrai il file ZIP zip_path = os.path.join(os.getcwd(), "en_core_web_sm.zip") extract_dir = os.path.join(os.getcwd(), "en_core_web_sm") if not os.path.exists(extract_dir): with zipfile.ZipFile(zip_path, 'r') as zip_ref: zip_ref.extractall(extract_dir) # Carica il modello nlp = spacy.load(extract_dir) # Carica il modello SentenceTransformer model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device='cpu') # Preprocessamento manuale (carica il manuale da un file o base di dati) with open('testo.txt', 'r', encoding='utf-8') as file: text = file.read() # Tokenizza il testo in frasi usando SpaCy doc = nlp(text) sentences = [sent.text for sent in doc.sents] # Estrarre frasi dal testo # Crea gli embedding per il manuale embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True) # Funzione per ottenere le frasi più rilevanti def find_relevant_sentences(query): query_embedding = model.encode([query]) similarities = cosine_similarity(query_embedding, embeddings).flatten() # Filtra i risultati in base alla similitudine threshold = 0.5 filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold] # Ordina i risultati per similitudine filtered_results.sort(key=lambda x: x[1], reverse=True) # Ottieni le frasi più rilevanti top_n = 4 relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]] return relevant_sentences # Interfaccia Gradio iface = gr.Interface( fn=find_relevant_sentences, inputs=gr.Textbox(label="Insert your query"), outputs=gr.Textbox(label="Relevant sentences"), title="Manual Querying System", description="Enter a question about the machine, and this tool will find the most relevant sentences from the manual." ) # Avvia l'app Gradio iface.launch()