import gradio as gr from langchain.vectorstores import FAISS from langchain.embeddings import HuggingFaceEmbeddings import zipfile import os # Percorsi per il primo file ZIP zip_path_m = "faiss_manual_index.zip" # File ZIP per l'indice manuale extraction_dir_m = "./extracted_models/manual_index" # Sottocartella per estrazione manuale testm_dir = "./extracted_models/manual_index/faiss_manual_index" # Cartella finale # Percorsi per il secondo file ZIP zip_path_p = "faiss_problems_index.zip" # File ZIP per l'indice problemi extraction_dir_p = "./extracted_models/problems_index" # Sottocartella per estrazione problemi testp_dir = "./extracted_models/problems_index/faiss_problems_index" # Cartella finale # Estrai il primo file ZIP se non esiste già if not os.path.exists(testm_dir): with zipfile.ZipFile(zip_path_m, 'r') as zip_ref: zip_ref.extractall(extraction_dir_m) print(f"Indice Manuale estratto correttamente nella cartella {extraction_dir_m}") else: print(f"Indice Manuale già presente in {testm_dir}") # Estrai il secondo file ZIP se non esiste già if not os.path.exists(testp_dir): with zipfile.ZipFile(zip_path_p, 'r') as zip_ref: zip_ref.extractall(extraction_dir_p) print(f"Indice Problemi estratto correttamente nella cartella {extraction_dir_p}") else: print(f"Indice Problemi già presente in {testp_dir}") # Carica il modello di embedding embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/LaBSE") # Carica i vectorstore FAISS salvati vectorstore = FAISS.load_local("faiss_index", embedding_model, allow_dangerous_deserialization=True) manual_vectorstore = FAISS.load_local("faiss_manual_index", embedding_model, allow_dangerous_deserialization=True) problems_vectorstore = FAISS.load_local("faiss_problems_index", embedding_model, allow_dangerous_deserialization=True) def search_query(query): # Cerca nei manuali manual_results = manual_vectorstore.similarity_search(query, k=2) manual_output = "\n\n".join([doc.page_content for doc in manual_results]) # Cerca nei problemi problems_results = problems_vectorstore.similarity_search(query, k=2) problems_output = "\n\n".join([doc.page_content for doc in problems_results]) # Restituisce i risultati come output diviso return manual_output, problems_output examples = [ ["How to change the knife?"], ["What are the safety precautions for using the machine?"], ["How can I get help with the machine?"] ] # Interfaccia Gradio iface = gr.Interface( fn=search_query, inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."), outputs=[ gr.Textbox(label="Manual Results"), gr.Textbox(label="Issues Results") ], examples=examples, title="Manual Querying System", description="Enter a question to get relevant information extracted from the manual and the most common related issues." ) # Avvia l'app iface.launch()