|
import gradio as gr |
|
from sentence_transformers import SentenceTransformer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import spacy |
|
|
|
|
|
nlp = spacy.load("en_core_web_sm") |
|
|
|
|
|
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device='cpu') |
|
|
|
|
|
with open('testo.txt', 'r', encoding='utf-8') as file: |
|
text = file.read() |
|
|
|
|
|
doc = nlp(text) |
|
sentences = [sent.text for sent in doc.sents] |
|
|
|
|
|
embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True) |
|
|
|
|
|
def find_relevant_sentences(query): |
|
query_embedding = model.encode([query]) |
|
similarities = cosine_similarity(query_embedding, embeddings).flatten() |
|
|
|
|
|
threshold = 0.5 |
|
filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold] |
|
|
|
|
|
filtered_results.sort(key=lambda x: x[1], reverse=True) |
|
|
|
|
|
top_n = 4 |
|
relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]] |
|
|
|
return relevant_sentences |
|
|
|
|
|
iface = gr.Interface( |
|
fn=find_relevant_sentences, |
|
inputs=gr.Textbox(label="Insert your query"), |
|
outputs=gr.Textbox(label="Relevant sentences"), |
|
title="Manual Querying System", |
|
description="Enter a question about the machine, and this tool will find the most relevant sentences from the manual." |
|
) |
|
|
|
|
|
iface.launch() |
|
|