Spaces:
Sleeping
Sleeping
import os | |
import spacy | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
import zipfile | |
zip_path = "en_core_web_sm-3.0.0.zip" # Carica il file ZIP nella cartella del progetto | |
extraction_dir = "./extracted_models" # Scegli una sottocartella per l'estrazione | |
test_dir = "./extracted_models/en_core_web_sm-3.0.0" # Cartella dopo l'estrazione | |
# Verifica se la cartella esiste già | |
if not os.path.exists(test_dir): | |
# Se la cartella non esiste, decomprimi il file ZIP | |
with zipfile.ZipFile(zip_path, 'r') as zip_ref: | |
zip_ref.extractall(extraction_dir) | |
print(f"Modello estratto correttamente nella cartella {extraction_dir}") | |
# Percorso della cartella estratta | |
model_path = os.path.join(extraction_dir, "en_core_web_sm-3.0.0") # Assicurati che sia corretto | |
# Carica il modello | |
nlp = spacy.load(model_path) | |
# Carica il modello SentenceTransformer | |
#model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', device='cpu') | |
#model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-v4', device='cpu') | |
#model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', device='cpu') | |
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2', device='cpu') | |
#model = SentenceTransformer('sentence-transformers/all-distilroberta-v1', device='cpu') | |
# Preprocessamento manuale (carica il manuale da un file o base di dati) | |
with open('testo.txt', 'r', encoding='utf-8') as file: | |
text = file.read() | |
# Tokenizza il testo in frasi usando SpaCy | |
doc = nlp(text) | |
sentences = [sent.text for sent in doc.sents] # Estrarre frasi dal testo | |
# Crea gli embedding per il manuale | |
embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True) | |
# Funzione per ottenere le frasi più rilevanti | |
def find_relevant_sentences(query): | |
query_embedding = model.encode([query]) | |
similarities = cosine_similarity(query_embedding, embeddings).flatten() | |
# Filtra i risultati in base alla similitudine | |
threshold = 0.2 | |
filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold] | |
# Ordina i risultati per similitudine | |
filtered_results.sort(key=lambda x: x[1], reverse=True) | |
# Ottieni le frasi più rilevanti | |
top_n = 5 | |
relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]] | |
doc = nlp(" ".join(relevant_sentences)) | |
grouped_results = [sent.text for sent in doc.sents] | |
# Pulizia | |
cleaned_results = [text.replace("\n", " ") for text in grouped_results] # Rimuove gli a capo | |
final_output = " ".join(cleaned_results) # Combina tutte le frasi in un unico testo | |
return final_output | |
examples = [ | |
["irresponsible use of the machine?"], | |
["If I have a problem how can I get help? "], | |
["precautions when using the cutting machine"], | |
["How do I change the knife of the cutting machine?"], | |
] | |
# Interfaccia Gradio | |
iface = gr.Interface( | |
fn=find_relevant_sentences, | |
inputs=gr.Textbox(label="Insert your query"), | |
outputs=gr.Textbox(label="Relevant sentences"), | |
examples=examples, | |
title="Manual Querying System", | |
description="Enter a question about the machine, and this tool will find the most relevant sentences from the manual." | |
) | |
# Avvia l'app Gradio | |
iface.launch() | |