Mauro24's picture
Update app.py
6288997 verified
raw
history blame
3.44 kB
import os
import spacy
import gradio as gr
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import zipfile
zip_path = "en_core_web_sm-3.0.0.zip" # Carica il file ZIP nella cartella del progetto
extraction_dir = "./extracted_models" # Scegli una sottocartella per l'estrazione
test_dir = "./extracted_models/en_core_web_sm-3.0.0" # Cartella dopo l'estrazione
# Verifica se la cartella esiste già
if not os.path.exists(test_dir):
# Se la cartella non esiste, decomprimi il file ZIP
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extraction_dir)
print(f"Modello estratto correttamente nella cartella {extraction_dir}")
# Percorso della cartella estratta
model_path = os.path.join(extraction_dir, "en_core_web_sm-3.0.0") # Assicurati che sia corretto
# Carica il modello
nlp = spacy.load(model_path)
# Carica il modello SentenceTransformer
#model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', device='cpu')
#model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-v4', device='cpu')
#model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', device='cpu')
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2', device='cpu')
#model = SentenceTransformer('sentence-transformers/all-distilroberta-v1', device='cpu')
# Preprocessamento manuale (carica il manuale da un file o base di dati)
with open('testo.txt', 'r', encoding='utf-8') as file:
text = file.read()
# Tokenizza il testo in frasi usando SpaCy
doc = nlp(text)
sentences = [sent.text for sent in doc.sents] # Estrarre frasi dal testo
# Crea gli embedding per il manuale
embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True)
# Funzione per ottenere le frasi più rilevanti
def find_relevant_sentences(query):
query_embedding = model.encode([query])
similarities = cosine_similarity(query_embedding, embeddings).flatten()
# Filtra i risultati in base alla similitudine
threshold = 0.2
filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold]
# Ordina i risultati per similitudine
filtered_results.sort(key=lambda x: x[1], reverse=True)
# Ottieni le frasi più rilevanti
top_n = 5
relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]]
doc = nlp(" ".join(relevant_sentences))
grouped_results = [sent.text for sent in doc.sents]
# Pulizia
cleaned_results = [text.replace("\n", " ") for text in grouped_results] # Rimuove gli a capo
final_output = " ".join(cleaned_results) # Combina tutte le frasi in un unico testo
return final_output
examples = [
["irresponsible use of the machine?"],
["If I have a problem how can I get help? "],
["precautions when using the cutting machine"],
["How do I change the knife of the cutting machine?"],
]
# Interfaccia Gradio
iface = gr.Interface(
fn=find_relevant_sentences,
inputs=gr.Textbox(label="Insert your query"),
outputs=gr.Textbox(label="Relevant sentences"),
examples=examples,
title="Manual Querying System",
description="Enter a question about the machine, and this tool will find the most relevant sentences from the manual."
)
# Avvia l'app Gradio
iface.launch()