Mauro24's picture
Update app.py
a56c804 verified
raw
history blame
2.02 kB
import gradio as gr
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import spacy
import zipfile
# Estrai il file ZIP
zip_path = os.path.join(os.getcwd(), "en_core_web_sm.zip")
extract_dir = os.path.join(os.getcwd(), "en_core_web_sm")
if not os.path.exists(extract_dir):
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_dir)
# Carica il modello
nlp = spacy.load(extract_dir)
# Carica il modello SentenceTransformer
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device='cpu')
# Preprocessamento manuale (carica il manuale da un file o base di dati)
with open('testo.txt', 'r', encoding='utf-8') as file:
text = file.read()
# Tokenizza il testo in frasi usando SpaCy
doc = nlp(text)
sentences = [sent.text for sent in doc.sents] # Estrarre frasi dal testo
# Crea gli embedding per il manuale
embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True)
# Funzione per ottenere le frasi più rilevanti
def find_relevant_sentences(query):
query_embedding = model.encode([query])
similarities = cosine_similarity(query_embedding, embeddings).flatten()
# Filtra i risultati in base alla similitudine
threshold = 0.5
filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold]
# Ordina i risultati per similitudine
filtered_results.sort(key=lambda x: x[1], reverse=True)
# Ottieni le frasi più rilevanti
top_n = 4
relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]]
return relevant_sentences
# Interfaccia Gradio
iface = gr.Interface(
fn=find_relevant_sentences,
inputs=gr.Textbox(label="Insert your query"),
outputs=gr.Textbox(label="Relevant sentences"),
title="Manual Querying System",
description="Enter a question about the machine, and this tool will find the most relevant sentences from the manual."
)
# Avvia l'app Gradio
iface.launch()