Spaces:
Sleeping
Sleeping
File size: 1,672 Bytes
6c05acd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
from sentence_transformers import SentenceTransformer
from scipy.spatial.distance import cosine
from sklearn.metrics.pairwise import cosine_similarity
import nltk
# Carica il modello
model = SentenceTransformer('sentence-transformers/all-roberta-large-v1', device='cpu')
nltk.download('punkt')
# Preprocessamento manuale (potresti caricare il manuale da un file o base di dati)
with open('manual.txt', 'r', encoding='utf-8') as file:
text = file.read()
# Tokenizza il testo
sentences = nltk.sent_tokenize(text)
# Crea gli embedding per il manuale
embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True)
# Funzione per ottenere le frasi più rilevanti
def find_relevant_sentences(query):
query_embedding = model.encode([query])
similarities = cosine_similarity(query_embedding, embeddings).flatten()
# Filtra i risultati in base alla similitudine
threshold = 0.5
filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold]
# Ordina i risultati per similitudine
filtered_results.sort(key=lambda x: x[1], reverse=True)
# Ottieni le frasi più rilevanti
top_n = 4
relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]]
return relevant_sentences
# Interfaccia Gradio
iface = gr.Interface(
fn=find_relevant_sentences,
inputs=gr.Textbox(label="Insert your query"),
outputs=gr.Textbox(label="Relevant sentences"),
title="Manual Querying System",
description="Enter a question about the machine, and this tool will find the most relevant sentences from the manual."
)
# Avvia l'app Gradio
iface.launch() |