File size: 1,672 Bytes
6c05acd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gr
from sentence_transformers import SentenceTransformer
from scipy.spatial.distance import cosine
from sklearn.metrics.pairwise import cosine_similarity
import nltk

# Carica il modello
model = SentenceTransformer('sentence-transformers/all-roberta-large-v1', device='cpu')
nltk.download('punkt')

# Preprocessamento manuale (potresti caricare il manuale da un file o base di dati)
with open('manual.txt', 'r', encoding='utf-8') as file:
    text = file.read()

# Tokenizza il testo
sentences = nltk.sent_tokenize(text)

# Crea gli embedding per il manuale
embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True)

# Funzione per ottenere le frasi più rilevanti
def find_relevant_sentences(query):
    query_embedding = model.encode([query])
    similarities = cosine_similarity(query_embedding, embeddings).flatten()

    # Filtra i risultati in base alla similitudine
    threshold = 0.5
    filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold]

    # Ordina i risultati per similitudine
    filtered_results.sort(key=lambda x: x[1], reverse=True)

    # Ottieni le frasi più rilevanti
    top_n = 4
    relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]]
    
    return relevant_sentences

# Interfaccia Gradio
iface = gr.Interface(
    fn=find_relevant_sentences, 
    inputs=gr.Textbox(label="Insert your query"), 
    outputs=gr.Textbox(label="Relevant sentences"),
    title="Manual Querying System",
    description="Enter a question about the machine, and this tool will find the most relevant sentences from the manual."
)

# Avvia l'app Gradio
iface.launch()