Update app.py
Browse files
app.py
CHANGED
@@ -1,212 +1,57 @@
|
|
1 |
import streamlit as st
|
2 |
-
from bs4 import BeautifulSoup
|
3 |
-
import io
|
4 |
-
import fitz # PyMuPDF
|
5 |
-
import requests
|
6 |
from langchain.llms import LlamaCpp
|
7 |
-
from langchain.callbacks.base import BaseCallbackHandler
|
8 |
-
from langchain.vectorstores import DocArrayInMemorySearch
|
9 |
-
from langchain.docstore.document import Document
|
10 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
-
from langchain.chains import
|
13 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
-
from docarray import Document, DocumentArray
|
15 |
-
from sentence_transformers import SentenceTransformer
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
class StreamHandler(BaseCallbackHandler):
|
21 |
-
def __init__(self, container, initial_text=""):
|
22 |
-
self.container = container
|
23 |
-
self.text = initial_text
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
class SimpleEmbeddingRetriever(BaseRetriever):
|
32 |
-
def __init__(self, documents):
|
33 |
-
self.documents = documents
|
34 |
-
|
35 |
-
def _get_relevant_documents(self, query: str, num_documents: int = 5):
|
36 |
-
query_doc = Document(text=query)
|
37 |
-
query_embedding = self.documents.embeddings.model.encode([query_doc.text])[0]
|
38 |
-
query_doc.embedding = query_embedding
|
39 |
-
scores = self.documents.match(query_doc, limit=num_documents, metric='cosine', use_scipy=True)
|
40 |
-
return [(doc.text, score) for doc, score in scores]
|
41 |
-
|
42 |
-
|
43 |
-
@st.cache_data
|
44 |
-
def get_page_urls(url):
|
45 |
-
try:
|
46 |
-
page = requests.get(url)
|
47 |
-
soup = BeautifulSoup(page.content, 'html.parser')
|
48 |
-
links = [link['href'] for link in soup.find_all('a') if 'href' in link.attrs and link['href'].startswith(url) and link['href'] not in [url]]
|
49 |
-
links.append(url)
|
50 |
-
return set(links)
|
51 |
-
except requests.RequestException as e:
|
52 |
-
st.error(f"Failed to load page: {e}")
|
53 |
-
return set()
|
54 |
-
|
55 |
-
|
56 |
-
def get_url_content(url):
|
57 |
-
try:
|
58 |
-
response = requests.get(url)
|
59 |
-
response.raise_for_status()
|
60 |
-
if url.endswith('.pdf'):
|
61 |
-
pdf = io.BytesIO(response.content)
|
62 |
-
doc = fitz.open(stream=pdf, filetype="pdf")
|
63 |
-
text = ''.join([page.get_text("text") for page in doc])
|
64 |
-
else:
|
65 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
66 |
-
content = soup.find_all('div', class_='wpb_content_element')
|
67 |
-
text = ' '.join([c.get_text().strip() for c in content if c.get_text().strip() != ''])
|
68 |
-
|
69 |
-
# Create a single document with metadata
|
70 |
-
document = Document(text=text, tags={'url': url})
|
71 |
-
return DocumentArray([document])
|
72 |
-
except Exception as e:
|
73 |
-
st.error(f"Failed to process URL content: {e}")
|
74 |
-
return DocumentArray()
|
75 |
-
|
76 |
-
|
77 |
-
@st.cache_resource
|
78 |
-
def get_retriever(urls):
|
79 |
-
documents = DocumentArray()
|
80 |
-
for url in urls:
|
81 |
-
content = get_url_content(url)
|
82 |
-
if content:
|
83 |
-
documents.extend(content)
|
84 |
-
|
85 |
-
model = SentenceTransformer('all-MiniLM-L6-v2')
|
86 |
-
embeddings = model.encode([doc.text for doc in documents], show_progress_bar=True)
|
87 |
-
for doc, emb in zip(documents, embeddings):
|
88 |
-
doc.embedding = emb
|
89 |
-
|
90 |
-
return SimpleEmbeddingRetriever(documents)
|
91 |
-
|
92 |
-
|
93 |
-
@st.cache_resource
|
94 |
-
def create_chain(_retriever):
|
95 |
-
# A stream handler to direct streaming output on the chat screen.
|
96 |
-
# This will need to be handled somewhat differently.
|
97 |
-
# But it demonstrates what potential it carries.
|
98 |
-
# stream_handler = StreamHandler(st.empty())
|
99 |
-
|
100 |
-
# Callback manager is a way to intercept streaming output from the
|
101 |
-
# LLM and take some action on it. Here we are giving it our custom
|
102 |
-
# stream handler to make it appear as if the LLM is typing the
|
103 |
-
# responses in real time.
|
104 |
-
# callback_manager = CallbackManager([stream_handler])
|
105 |
-
|
106 |
-
n_gpu_layers = 5 # Change this value based on your model and your GPU VRAM pool.
|
107 |
-
n_batch = 512 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
|
108 |
|
109 |
llm = LlamaCpp(
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
streaming=True,
|
119 |
-
)
|
120 |
-
|
121 |
-
# Template for the prompt.
|
122 |
-
# template = "{question}"
|
123 |
-
|
124 |
-
# We create a prompt from the template so we can use it with langchain
|
125 |
-
# prompt = PromptTemplate(template=template, input_variables=["question"])
|
126 |
|
127 |
# Setup memory for contextual conversation
|
128 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
129 |
|
130 |
-
#
|
131 |
-
|
132 |
-
|
133 |
-
)
|
134 |
-
|
135 |
-
return qa_chain
|
136 |
-
|
137 |
-
|
138 |
-
# Set the webpage title
|
139 |
-
st.set_page_config(
|
140 |
-
page_title="Your own AI-Chat!"
|
141 |
-
)
|
142 |
-
|
143 |
-
# Create a header element
|
144 |
-
st.header("Your own AI-Chat!")
|
145 |
-
|
146 |
-
# This sets the LLM's personality.
|
147 |
-
# The initial personality privided is basic.
|
148 |
-
# Try something interesting and notice how the LLM responses are affected.
|
149 |
-
# system_prompt = st.text_area(
|
150 |
-
# label="System Prompt",
|
151 |
-
# value="You are a helpful AI assistant who answers questions in short sentences.",
|
152 |
-
# key="system_prompt")
|
153 |
-
|
154 |
-
if "base_url" not in st.session_state:
|
155 |
-
st.session_state.base_url = ""
|
156 |
-
|
157 |
-
base_url = st.text_input("Enter the site url here", key="base_url")
|
158 |
-
|
159 |
-
if st.session_state.base_url != "":
|
160 |
-
urls = get_page_urls(base_url)
|
161 |
-
|
162 |
-
retriever = get_retriever(urls)
|
163 |
-
|
164 |
-
# We store the conversation in the session state.
|
165 |
-
# This will be used to render the chat conversation.
|
166 |
-
# We initialize it with the first message we want to be greeted with.
|
167 |
-
if "messages" not in st.session_state:
|
168 |
-
st.session_state.messages = [
|
169 |
-
{"role": "assistant", "content": "How may I help you today?"}
|
170 |
-
]
|
171 |
-
|
172 |
-
if "current_response" not in st.session_state:
|
173 |
-
st.session_state.current_response = ""
|
174 |
-
|
175 |
-
# We loop through each message in the session state and render it as
|
176 |
-
# a chat message.
|
177 |
-
for message in st.session_state.messages:
|
178 |
-
with st.chat_message(message["role"]):
|
179 |
-
st.markdown(message["content"])
|
180 |
-
|
181 |
-
# We initialize the quantized LLM from a local path.
|
182 |
-
# Currently most parameters are fixed but we can make them
|
183 |
-
# configurable.
|
184 |
-
llm_chain = create_chain(retriever)
|
185 |
|
186 |
-
|
187 |
-
if user_prompt := st.chat_input("Your message here", key="user_input"):
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
{"role": "user", "content": user_prompt}
|
192 |
-
)
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
{"role": "assistant", "content": response}
|
207 |
-
)
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
st.markdown(response)
|
212 |
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
2 |
from langchain.llms import LlamaCpp
|
|
|
|
|
|
|
|
|
3 |
from langchain.memory import ConversationBufferMemory
|
4 |
+
from langchain.chains import ConversationalChain
|
|
|
|
|
|
|
5 |
|
6 |
+
# Streamlit page configuration
|
7 |
+
st.set_page_config(page_title="Simple AI Chatbot")
|
8 |
+
st.header("Simple AI Chatbot")
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Initialize the Language Model Chain
|
11 |
+
@st.experimental_singleton
|
12 |
+
def initialize_chain():
|
13 |
+
n_gpu_layers = 40
|
14 |
+
n_batch = 2048
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
llm = LlamaCpp(
|
17 |
+
model_path="models/mistral-7b-instruct-v0.1.Q5_0.gguf",
|
18 |
+
n_gpu_layers=n_gpu_layers,
|
19 |
+
n_batch=n_batch,
|
20 |
+
n_ctx=2048,
|
21 |
+
temperature=0,
|
22 |
+
verbose=False,
|
23 |
+
streaming=True,
|
24 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Setup memory for contextual conversation
|
27 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
28 |
|
29 |
+
# Initialize the conversational chain
|
30 |
+
chat_chain = ConversationalChain(llm=llm, memory=memory, verbose=False)
|
31 |
+
return chat_chain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
llm_chain = initialize_chain()
|
|
|
34 |
|
35 |
+
if "messages" not in st.session_state:
|
36 |
+
st.session_state.messages = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
|
|
|
|
|
37 |
|
38 |
+
# Display conversation messages
|
39 |
+
for message in st.session_state.messages:
|
40 |
+
with st.chat_message(message["role"]):
|
41 |
+
st.markdown(message["content"])
|
42 |
|
43 |
+
# Handling user input
|
44 |
+
user_input = st.chat_input("Type your message...", key="user_input")
|
45 |
+
if user_input:
|
46 |
+
# Append user message to the conversation
|
47 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
48 |
|
49 |
+
# Get response from the LLM
|
50 |
+
response = llm_chain.run(user_input)
|
|
|
|
|
51 |
|
52 |
+
# Append LLM response to the conversation
|
53 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
54 |
|
55 |
+
# Update chat window with the assistant's response
|
56 |
+
with st.chat_message("assistant"):
|
57 |
+
st.markdown(response)
|