Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,19 @@
|
|
1 |
import streamlit as st
|
2 |
from bs4 import BeautifulSoup
|
3 |
import io
|
4 |
-
import fitz
|
5 |
import requests
|
|
|
|
|
|
|
6 |
from langchain.llms import LlamaCpp
|
7 |
from langchain.callbacks.base import BaseCallbackHandler
|
8 |
from langchain.vectorstores import DocArrayInMemorySearch
|
9 |
-
from langchain.docstore.document import Document
|
10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain.chains import ConversationalRetrievalChain
|
13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
|
15 |
-
|
16 |
-
# StreamHandler to intercept streaming output from the LLM.
|
17 |
-
# This makes it appear that the Language Model is "typing"
|
18 |
-
# in realtime.
|
19 |
class StreamHandler(BaseCallbackHandler):
|
20 |
def __init__(self, container, initial_text=""):
|
21 |
self.container = container
|
@@ -25,24 +23,25 @@ class StreamHandler(BaseCallbackHandler):
|
|
25 |
self.text += token
|
26 |
self.container.markdown(self.text)
|
27 |
|
|
|
|
|
|
|
|
|
28 |
|
29 |
@st.cache_data
|
30 |
-
|
31 |
def get_page_urls(url):
|
32 |
page = requests.get(url)
|
33 |
soup = BeautifulSoup(page.content, 'html.parser')
|
34 |
-
links = [link['href'] for link in soup.find_all('a') if
|
35 |
links.append(url)
|
36 |
return set(links)
|
37 |
|
38 |
@st.cache(allow_output_mutation=True)
|
39 |
def process_pdf(file):
|
40 |
-
|
41 |
-
doc = fitz.open("pdf", file.read()) # "pdf" indicates file format is PDF, reading the BytesIO stream
|
42 |
texts = [page.get_text() for page in doc]
|
43 |
return '\n'.join(texts)
|
44 |
|
45 |
-
|
46 |
def get_url_content(url):
|
47 |
response = requests.get(url)
|
48 |
if url.endswith('.pdf'):
|
@@ -52,93 +51,49 @@ def get_url_content(url):
|
|
52 |
else:
|
53 |
soup = BeautifulSoup(response.content, 'html.parser')
|
54 |
content = soup.find_all('div', class_='wpb_content_element')
|
55 |
-
text = [c.get_text().strip() for c in content
|
56 |
-
|
57 |
-
# Exclude footer content
|
58 |
-
try:
|
59 |
-
arts_on_index = text.index('ARTS ON:')
|
60 |
-
return (url, '\n'.join(text[:arts_on_index]))
|
61 |
-
except ValueError:
|
62 |
-
return (url, '\n'.join(text)) # Return full text if specific marker not found
|
63 |
|
64 |
@st.cache_resource
|
65 |
def get_retriever(urls):
|
66 |
all_content = [get_url_content(url) for url in urls]
|
67 |
-
|
68 |
-
documents = [Document(page_content=doc, metadata={'url': url}) for (url, doc) in all_content]
|
69 |
-
print(documents) # Verify that documents are created correctly
|
70 |
-
|
71 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200)
|
72 |
docs = text_splitter.split_documents(documents)
|
73 |
-
print(docs) # Check the final structure of split documents
|
74 |
-
|
75 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
76 |
db = DocArrayInMemorySearch.from_documents(docs, embeddings)
|
77 |
retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10})
|
78 |
return retriever
|
79 |
|
80 |
-
|
81 |
@st.cache_resource
|
82 |
def create_chain(_retriever):
|
83 |
-
|
84 |
-
|
85 |
-
# But it demonstrates what potential it carries.
|
86 |
-
# stream_handler = StreamHandler(st.empty())
|
87 |
-
|
88 |
-
# Callback manager is a way to intercept streaming output from the
|
89 |
-
# LLM and take some action on it. Here we are giving it our custom
|
90 |
-
# stream handler to make it appear as if the LLM is typing the
|
91 |
-
# responses in real time.
|
92 |
-
# callback_manager = CallbackManager([stream_handler])
|
93 |
-
|
94 |
-
n_gpu_layers = 40 # Change this value based on your model and your GPU VRAM pool.
|
95 |
-
n_batch = 2048 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
|
96 |
-
|
97 |
llm = LlamaCpp(
|
98 |
-
model_path="models
|
99 |
n_gpu_layers=n_gpu_layers,
|
100 |
n_batch=n_batch,
|
101 |
n_ctx=2048,
|
102 |
-
# max_tokens=2048,
|
103 |
temperature=0,
|
104 |
-
# callback_manager=callback_manager,
|
105 |
verbose=False,
|
106 |
streaming=True,
|
107 |
)
|
108 |
-
|
109 |
-
# Template for the prompt.
|
110 |
-
# template = "{question}"
|
111 |
-
|
112 |
-
# We create a prompt from the template so we can use it with langchain
|
113 |
-
# prompt = PromptTemplate(template=template, input_variables=["question"])
|
114 |
-
|
115 |
-
# Setup memory for contextual conversation
|
116 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
117 |
-
|
118 |
-
# We create a qa chain with our llm, retriever, and memory
|
119 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
120 |
llm, retriever=_retriever, memory=memory, verbose=False
|
121 |
)
|
122 |
-
|
123 |
return qa_chain
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
# Set the webpage title
|
128 |
st.set_page_config(page_title="Your own AI-Chat!")
|
129 |
st.header("Your own AI-Chat!")
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
# label="System Prompt",
|
136 |
-
# value="You are a helpful AI assistant who answers questions in short sentences.",
|
137 |
-
# key="system_prompt")
|
138 |
-
# Choose input method
|
139 |
|
140 |
input_type = st.radio("Choose an input method:", ['URL', 'Upload PDF'])
|
141 |
-
|
142 |
if input_type == 'URL':
|
143 |
base_url = st.text_input("Enter the site URL here:", key="base_url")
|
144 |
if base_url:
|
@@ -149,36 +104,21 @@ elif input_type == 'Upload PDF':
|
|
149 |
uploaded_file = st.file_uploader("Upload your PDF here:", type="pdf")
|
150 |
if uploaded_file:
|
151 |
pdf_text = process_pdf(uploaded_file)
|
152 |
-
|
153 |
-
|
154 |
-
retriever = get_retriever(urls) # Ensure your retriever can handle raw text; if not, adapt it.
|
155 |
llm_chain = create_chain(retriever)
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
st.session_state.messages
|
164 |
-
|
165 |
-
|
166 |
-
st.
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
st.markdown(message["content"])
|
172 |
-
|
173 |
-
# Input and response handling
|
174 |
-
if llm_chain and (user_prompt := st.chat_input("Your message here", key="user_input")):
|
175 |
-
# Add user input to the session state and chat window
|
176 |
-
st.session_state.messages.append({"role": "user", "content": user_prompt})
|
177 |
-
with st.chat_message("user"):
|
178 |
-
st.markdown(user_prompt)
|
179 |
-
|
180 |
-
# Generate and display the response using the LLM chain
|
181 |
-
response = llm_chain.run(user_prompt)
|
182 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
183 |
-
with st.chat_message("assistant"):
|
184 |
-
st.markdown(response)
|
|
|
1 |
import streamlit as st
|
2 |
from bs4 import BeautifulSoup
|
3 |
import io
|
4 |
+
import fitz # PyMuPDF
|
5 |
import requests
|
6 |
+
from docarray import Document
|
7 |
+
from pydantic import BaseModel, Field
|
8 |
+
from typing import List
|
9 |
from langchain.llms import LlamaCpp
|
10 |
from langchain.callbacks.base import BaseCallbackHandler
|
11 |
from langchain.vectorstores import DocArrayInMemorySearch
|
|
|
12 |
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
from langchain.memory import ConversationBufferMemory
|
14 |
from langchain.chains import ConversationalRetrievalChain
|
15 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
16 |
|
|
|
|
|
|
|
|
|
17 |
class StreamHandler(BaseCallbackHandler):
|
18 |
def __init__(self, container, initial_text=""):
|
19 |
self.container = container
|
|
|
23 |
self.text += token
|
24 |
self.container.markdown(self.text)
|
25 |
|
26 |
+
class DocArrayDoc(BaseModel):
|
27 |
+
text: str = Field(default="")
|
28 |
+
embedding: List[float]
|
29 |
+
metadata: dict = Field(default_factory=dict)
|
30 |
|
31 |
@st.cache_data
|
|
|
32 |
def get_page_urls(url):
|
33 |
page = requests.get(url)
|
34 |
soup = BeautifulSoup(page.content, 'html.parser')
|
35 |
+
links = [link['href'] for link in soup.find_all('a', href=True) if link['href'].startswith(url)]
|
36 |
links.append(url)
|
37 |
return set(links)
|
38 |
|
39 |
@st.cache(allow_output_mutation=True)
|
40 |
def process_pdf(file):
|
41 |
+
doc = fitz.open("pdf", file.read())
|
|
|
42 |
texts = [page.get_text() for page in doc]
|
43 |
return '\n'.join(texts)
|
44 |
|
|
|
45 |
def get_url_content(url):
|
46 |
response = requests.get(url)
|
47 |
if url.endswith('.pdf'):
|
|
|
51 |
else:
|
52 |
soup = BeautifulSoup(response.content, 'html.parser')
|
53 |
content = soup.find_all('div', class_='wpb_content_element')
|
54 |
+
text = ' '.join([c.get_text().strip() for c in content])
|
55 |
+
return (url, text)
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
@st.cache_resource
|
58 |
def get_retriever(urls):
|
59 |
all_content = [get_url_content(url) for url in urls]
|
60 |
+
documents = [Document(text=content, metadata={'url': url}) for (url, content) in all_content]
|
|
|
|
|
|
|
61 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200)
|
62 |
docs = text_splitter.split_documents(documents)
|
|
|
|
|
63 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
64 |
db = DocArrayInMemorySearch.from_documents(docs, embeddings)
|
65 |
retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10})
|
66 |
return retriever
|
67 |
|
|
|
68 |
@st.cache_resource
|
69 |
def create_chain(_retriever):
|
70 |
+
n_gpu_layers = 10
|
71 |
+
n_batch = 2048
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
llm = LlamaCpp(
|
73 |
+
model_path="models/mistral-7b-instruct-v0.1.Q5_0.gguf",
|
74 |
n_gpu_layers=n_gpu_layers,
|
75 |
n_batch=n_batch,
|
76 |
n_ctx=2048,
|
|
|
77 |
temperature=0,
|
|
|
78 |
verbose=False,
|
79 |
streaming=True,
|
80 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
|
|
|
|
82 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
83 |
llm, retriever=_retriever, memory=memory, verbose=False
|
84 |
)
|
|
|
85 |
return qa_chain
|
86 |
|
87 |
+
# Webpage title and header
|
|
|
|
|
88 |
st.set_page_config(page_title="Your own AI-Chat!")
|
89 |
st.header("Your own AI-Chat!")
|
90 |
|
91 |
+
system_prompt = st.text_area(
|
92 |
+
label="System Prompt",
|
93 |
+
value="You are a helpful AI assistant who answers questions accurately.",
|
94 |
+
key="system_prompt")
|
|
|
|
|
|
|
|
|
95 |
|
96 |
input_type = st.radio("Choose an input method:", ['URL', 'Upload PDF'])
|
|
|
97 |
if input_type == 'URL':
|
98 |
base_url = st.text_input("Enter the site URL here:", key="base_url")
|
99 |
if base_url:
|
|
|
104 |
uploaded_file = st.file_uploader("Upload your PDF here:", type="pdf")
|
105 |
if uploaded_file:
|
106 |
pdf_text = process_pdf(uploaded_file)
|
107 |
+
urls = [pdf_text] # Assuming this needs to be wrapped into proper structure
|
108 |
+
retriever = get_retriever(urls) # Ensure retriever accepts this
|
|
|
109 |
llm_chain = create_chain(retriever)
|
110 |
|
111 |
+
# Interaction and message handling
|
112 |
+
if 'retriever' in locals() and retriever:
|
113 |
+
if "messages" not in st.session_state:
|
114 |
+
st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}]
|
115 |
+
if "current_response" not in st.session_state:
|
116 |
+
st.session_state.current_response = ""
|
117 |
+
for message in st.session_state.messages:
|
118 |
+
with st.chat_message(message["role"]):
|
119 |
+
st.markdown(message["content"])
|
120 |
+
user_prompt = st.chat_input("Your message here", key="user_input")
|
121 |
+
if user_prompt:
|
122 |
+
st.session_state.messages.append({"role": "user", "content": user_prompt})
|
123 |
+
response = llm_chain.run(user_prompt)
|
124 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|