Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,21 @@
|
|
1 |
import streamlit as st
|
2 |
from bs4 import BeautifulSoup
|
3 |
import io
|
4 |
-
import fitz
|
5 |
import requests
|
6 |
-
from docarray import Document
|
7 |
-
from pydantic import BaseModel, Field
|
8 |
-
from typing import List
|
9 |
from langchain.llms import LlamaCpp
|
10 |
from langchain.callbacks.base import BaseCallbackHandler
|
11 |
from langchain.vectorstores import DocArrayInMemorySearch
|
|
|
12 |
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
from langchain.memory import ConversationBufferMemory
|
14 |
from langchain.chains import ConversationalRetrievalChain
|
15 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
16 |
|
|
|
|
|
|
|
|
|
17 |
class StreamHandler(BaseCallbackHandler):
|
18 |
def __init__(self, container, initial_text=""):
|
19 |
self.container = container
|
@@ -23,102 +25,171 @@ class StreamHandler(BaseCallbackHandler):
|
|
23 |
self.text += token
|
24 |
self.container.markdown(self.text)
|
25 |
|
26 |
-
class DocArrayDoc(BaseModel):
|
27 |
-
text: str = Field(default="")
|
28 |
-
embedding: List[float]
|
29 |
-
metadata: dict = Field(default_factory=dict)
|
30 |
|
31 |
@st.cache_data
|
32 |
def get_page_urls(url):
|
33 |
page = requests.get(url)
|
34 |
soup = BeautifulSoup(page.content, 'html.parser')
|
35 |
-
links = [link['href'] for link in soup.find_all('a'
|
36 |
links.append(url)
|
37 |
return set(links)
|
38 |
|
39 |
-
@st.cache(allow_output_mutation=True)
|
40 |
-
def process_pdf(file):
|
41 |
-
doc = fitz.open("pdf", file.read())
|
42 |
-
texts = [page.get_text() for page in doc]
|
43 |
-
return '\n'.join(texts)
|
44 |
|
45 |
def get_url_content(url):
|
46 |
response = requests.get(url)
|
47 |
if url.endswith('.pdf'):
|
48 |
pdf = io.BytesIO(response.content)
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
else:
|
52 |
soup = BeautifulSoup(response.content, 'html.parser')
|
|
|
|
|
|
|
53 |
content = soup.find_all('div', class_='wpb_content_element')
|
54 |
-
text =
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
@st.cache_resource
|
58 |
def get_retriever(urls):
|
59 |
all_content = [get_url_content(url) for url in urls]
|
60 |
-
documents = [Document(
|
|
|
61 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200)
|
62 |
docs = text_splitter.split_documents(documents)
|
|
|
63 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
|
|
64 |
db = DocArrayInMemorySearch.from_documents(docs, embeddings)
|
65 |
retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10})
|
66 |
return retriever
|
67 |
|
|
|
68 |
@st.cache_resource
|
69 |
def create_chain(_retriever):
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
llm = LlamaCpp(
|
73 |
model_path="models/mistral-7b-instruct-v0.1.Q5_0.gguf",
|
74 |
n_gpu_layers=n_gpu_layers,
|
75 |
n_batch=n_batch,
|
76 |
n_ctx=2048,
|
|
|
77 |
temperature=0,
|
|
|
78 |
verbose=False,
|
79 |
streaming=True,
|
80 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
|
|
|
|
82 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
83 |
llm, retriever=_retriever, memory=memory, verbose=False
|
84 |
)
|
|
|
85 |
return qa_chain
|
86 |
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
st.header("Your own AI-Chat!")
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
#
|
112 |
-
if 'retriever' in locals() and retriever:
|
113 |
if "messages" not in st.session_state:
|
114 |
-
st.session_state.messages = [
|
|
|
|
|
|
|
115 |
if "current_response" not in st.session_state:
|
116 |
st.session_state.current_response = ""
|
|
|
|
|
|
|
117 |
for message in st.session_state.messages:
|
118 |
with st.chat_message(message["role"]):
|
119 |
st.markdown(message["content"])
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
response = llm_chain.run(user_prompt)
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from bs4 import BeautifulSoup
|
3 |
import io
|
4 |
+
import fitz
|
5 |
import requests
|
|
|
|
|
|
|
6 |
from langchain.llms import LlamaCpp
|
7 |
from langchain.callbacks.base import BaseCallbackHandler
|
8 |
from langchain.vectorstores import DocArrayInMemorySearch
|
9 |
+
from langchain.docstore.document import Document
|
10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain.chains import ConversationalRetrievalChain
|
13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
|
15 |
+
|
16 |
+
# StreamHandler to intercept streaming output from the LLM.
|
17 |
+
# This makes it appear that the Language Model is "typing"
|
18 |
+
# in realtime.
|
19 |
class StreamHandler(BaseCallbackHandler):
|
20 |
def __init__(self, container, initial_text=""):
|
21 |
self.container = container
|
|
|
25 |
self.text += token
|
26 |
self.container.markdown(self.text)
|
27 |
|
|
|
|
|
|
|
|
|
28 |
|
29 |
@st.cache_data
|
30 |
def get_page_urls(url):
|
31 |
page = requests.get(url)
|
32 |
soup = BeautifulSoup(page.content, 'html.parser')
|
33 |
+
links = [link['href'] for link in soup.find_all('a') if link['href'].startswith(url) and link['href'] not in [url]]
|
34 |
links.append(url)
|
35 |
return set(links)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def get_url_content(url):
|
39 |
response = requests.get(url)
|
40 |
if url.endswith('.pdf'):
|
41 |
pdf = io.BytesIO(response.content)
|
42 |
+
file = open('pdf.pdf', 'wb')
|
43 |
+
file.write(pdf.read())
|
44 |
+
file.close()
|
45 |
+
doc = fitz.open('pdf.pdf')
|
46 |
+
return (url, ''.join([text for page in doc for text in page.get_text()]))
|
47 |
else:
|
48 |
soup = BeautifulSoup(response.content, 'html.parser')
|
49 |
+
|
50 |
+
# Content containers. Here wordpress specific container css class name
|
51 |
+
# used. This will be different for each website.
|
52 |
content = soup.find_all('div', class_='wpb_content_element')
|
53 |
+
text = [c.get_text().strip() for c in content if c.get_text().strip() != '']
|
54 |
+
text = [line for item in text for line in item.split('\n') if line.strip() != '']
|
55 |
+
|
56 |
+
# Post processing to exclude footer content.
|
57 |
+
# This will be different for each website.
|
58 |
+
arts_on = text.index('ARTS ON:')
|
59 |
+
return (url, '\n'.join(text[:arts_on]))
|
60 |
+
|
61 |
|
62 |
@st.cache_resource
|
63 |
def get_retriever(urls):
|
64 |
all_content = [get_url_content(url) for url in urls]
|
65 |
+
documents = [Document(page_content=doc, metadata={'url': url}) for (url, doc) in all_content]
|
66 |
+
|
67 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200)
|
68 |
docs = text_splitter.split_documents(documents)
|
69 |
+
|
70 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
71 |
+
|
72 |
db = DocArrayInMemorySearch.from_documents(docs, embeddings)
|
73 |
retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10})
|
74 |
return retriever
|
75 |
|
76 |
+
|
77 |
@st.cache_resource
|
78 |
def create_chain(_retriever):
|
79 |
+
# A stream handler to direct streaming output on the chat screen.
|
80 |
+
# This will need to be handled somewhat differently.
|
81 |
+
# But it demonstrates what potential it carries.
|
82 |
+
# stream_handler = StreamHandler(st.empty())
|
83 |
+
|
84 |
+
# Callback manager is a way to intercept streaming output from the
|
85 |
+
# LLM and take some action on it. Here we are giving it our custom
|
86 |
+
# stream handler to make it appear as if the LLM is typing the
|
87 |
+
# responses in real time.
|
88 |
+
# callback_manager = CallbackManager([stream_handler])
|
89 |
+
|
90 |
+
n_gpu_layers = 40 # Change this value based on your model and your GPU VRAM pool.
|
91 |
+
n_batch = 2048 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
|
92 |
+
|
93 |
llm = LlamaCpp(
|
94 |
model_path="models/mistral-7b-instruct-v0.1.Q5_0.gguf",
|
95 |
n_gpu_layers=n_gpu_layers,
|
96 |
n_batch=n_batch,
|
97 |
n_ctx=2048,
|
98 |
+
# max_tokens=2048,
|
99 |
temperature=0,
|
100 |
+
# callback_manager=callback_manager,
|
101 |
verbose=False,
|
102 |
streaming=True,
|
103 |
)
|
104 |
+
|
105 |
+
# Template for the prompt.
|
106 |
+
# template = "{question}"
|
107 |
+
|
108 |
+
# We create a prompt from the template so we can use it with langchain
|
109 |
+
# prompt = PromptTemplate(template=template, input_variables=["question"])
|
110 |
+
|
111 |
+
# Setup memory for contextual conversation
|
112 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
113 |
+
|
114 |
+
# We create a qa chain with our llm, retriever, and memory
|
115 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
116 |
llm, retriever=_retriever, memory=memory, verbose=False
|
117 |
)
|
118 |
+
|
119 |
return qa_chain
|
120 |
|
121 |
+
|
122 |
+
# Set the webpage title
|
123 |
+
st.set_page_config(
|
124 |
+
page_title="Your own AI-Chat!"
|
125 |
+
)
|
126 |
+
|
127 |
+
# Create a header element
|
128 |
st.header("Your own AI-Chat!")
|
129 |
|
130 |
+
# This sets the LLM's personality.
|
131 |
+
# The initial personality privided is basic.
|
132 |
+
# Try something interesting and notice how the LLM responses are affected.
|
133 |
+
# system_prompt = st.text_area(
|
134 |
+
# label="System Prompt",
|
135 |
+
# value="You are a helpful AI assistant who answers questions in short sentences.",
|
136 |
+
# key="system_prompt")
|
137 |
+
|
138 |
+
if "base_url" not in st.session_state:
|
139 |
+
st.session_state.base_url = ""
|
140 |
+
|
141 |
+
base_url = st.text_input("Enter the site url here", key="base_url")
|
142 |
+
|
143 |
+
if st.session_state.base_url != "":
|
144 |
+
urls = get_page_urls(base_url)
|
145 |
+
|
146 |
+
retriever = get_retriever(urls)
|
147 |
+
|
148 |
+
# We store the conversation in the session state.
|
149 |
+
# This will be used to render the chat conversation.
|
150 |
+
# We initialize it with the first message we want to be greeted with.
|
|
|
151 |
if "messages" not in st.session_state:
|
152 |
+
st.session_state.messages = [
|
153 |
+
{"role": "assistant", "content": "How may I help you today?"}
|
154 |
+
]
|
155 |
+
|
156 |
if "current_response" not in st.session_state:
|
157 |
st.session_state.current_response = ""
|
158 |
+
|
159 |
+
# We loop through each message in the session state and render it as
|
160 |
+
# a chat message.
|
161 |
for message in st.session_state.messages:
|
162 |
with st.chat_message(message["role"]):
|
163 |
st.markdown(message["content"])
|
164 |
+
|
165 |
+
# We initialize the quantized LLM from a local path.
|
166 |
+
# Currently most parameters are fixed but we can make them
|
167 |
+
# configurable.
|
168 |
+
llm_chain = create_chain(retriever)
|
169 |
+
|
170 |
+
# We take questions/instructions from the chat input to pass to the LLM
|
171 |
+
if user_prompt := st.chat_input("Your message here", key="user_input"):
|
172 |
+
|
173 |
+
# Add our input to the session state
|
174 |
+
st.session_state.messages.append(
|
175 |
+
{"role": "user", "content": user_prompt}
|
176 |
+
)
|
177 |
+
|
178 |
+
# Add our input to the chat window
|
179 |
+
with st.chat_message("user"):
|
180 |
+
st.markdown(user_prompt)
|
181 |
+
|
182 |
+
# Pass our input to the llm chain and capture the final responses.
|
183 |
+
# It is worth noting that the Stream Handler is already receiving the
|
184 |
+
# streaming response as the llm is generating. We get our response
|
185 |
+
# here once the llm has finished generating the complete response.
|
186 |
response = llm_chain.run(user_prompt)
|
187 |
+
|
188 |
+
# Add the response to the session state
|
189 |
+
st.session_state.messages.append(
|
190 |
+
{"role": "assistant", "content": response}
|
191 |
+
)
|
192 |
+
|
193 |
+
# Add the response to the chat window
|
194 |
+
with st.chat_message("assistant"):
|
195 |
+
st.markdown(response)
|