Spaces:
Sleeping
Sleeping
File size: 2,984 Bytes
245b419 90a52dd 245b419 90a52dd 245b419 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Background effect from CodePen
background_html = """
<style>
body {
margin: 0;
padding: 0;
overflow: hidden;
background: #141414;
}
.canvas-container {
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
z-index: -1;
display: flex;
justify-content: center;
align-items: center;
}
canvas {
display: block;
width: 100%;
height: 100%;
}
</style>
<div class="canvas-container">
<canvas id="background-effect"></canvas>
</div>
<script>
const canvas = document.getElementById('background-effect');
const ctx = canvas.getContext('2d');
function resizeCanvas() {
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
}
window.addEventListener('resize', resizeCanvas);
resizeCanvas();
function randomInt(min, max) {
return Math.floor(Math.random() * (max - min + 1)) + min;
}
function drawBackground() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
for (let i = 0; i < 100; i++) {
const x = randomInt(0, canvas.width);
const y = randomInt(0, canvas.height);
const radius = randomInt(1, 5);
const r = randomInt(0, 255);
const g = randomInt(0, 255);
const b = randomInt(0, 255);
const alpha = Math.random();
ctx.beginPath();
ctx.arc(x, y, radius, 0, Math.PI * 2, false);
ctx.fillStyle = `rgba(${r}, ${g}, ${b}, ${alpha})`;
ctx.fill();
}
requestAnimationFrame(drawBackground);
}
drawBackground();
</script>
"""
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
with gr.Blocks() as demo:
gr.HTML(background_html) # Insert the background effect
gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|