Omdena-Phoenix / app.py
Mattral's picture
Update app.py
d6c928b verified
raw
history blame
4.5 kB
import gradio as gr
from huggingface_hub import InferenceClient
import random
import textwrap
# Define the model to be used
model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
# Load model directly
#model = "GRMenon/mental-health-mistral-7b-instructv0.2-finetuned-V2"
client = InferenceClient(model)
# Embedded system prompt
system_prompt_text = "Act like a compassionate and helpful Health consultant and professional named PhoenixA. You help and support with any kind of request and provide a detailed answer or suggestion to the question. You are friendly and always willing to help. But if you are asked about something unethical or dangerous, you must provide a safe and respectful way to handle that. Never say that you cannot help themBe sure to ask for specific problem and do your best to give professional advices, remember you are a professional."
# Read the content of the info.md file
with open("info.md", "r") as file:
info_md_content = file.read()
# Chunk the info.md content into smaller sections
chunk_size = 2000 # Adjust this size as needed
info_md_chunks = textwrap.wrap(info_md_content, chunk_size)
def get_all_chunks(chunks):
return "\n\n".join(chunks)
def format_prompt_mixtral(message, history, info_md_chunks):
prompt = "<s>"
all_chunks = get_all_chunks(info_md_chunks)
prompt += f"{all_chunks}\n\n" # Add all chunks of info.md at the beginning
prompt += f"{system_prompt_text}\n\n" # Add the system prompt
if history:
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def chat_inf(prompt, history, seed, temp, tokens, top_p, rep_p):
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
formatted_prompt = format_prompt_mixtral(prompt, history, info_md_chunks)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield [(prompt, output)]
history.append((prompt, output))
yield history
def clear_fn():
return None, None
rand_val = random.randint(1, 1111111111111111)
def check_rand(inp, val):
if inp:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks() as app: # Add auth here
gr.HTML("""<center><h1 style='font-size:xx-large;'>CareNetAI</h1><br><h3> made with love by YAiC </h3><br><h7>EXPERIMENTAL</center>""")
with gr.Row():
chat = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt", lines=5, interactive=True) # Increased lines and interactive
with gr.Row():
with gr.Column(scale=2):
btn = gr.Button("Chat")
with gr.Column(scale=1):
with gr.Group():
stop_btn = gr.Button("Stop")
clear_btn = gr.Button("Clear")
with gr.Column(scale=1):
with gr.Group():
rand = gr.Checkbox(label="Random Seed", value=True)
seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
tokens = gr.Slider(label="Max new tokens", value=3840, minimum=0, maximum=8000, step=64, interactive=True, visible=True, info="The maximum number of tokens")
temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
hid1 = gr.Number(value=1, visible=False)
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, [inp, chat, seed, temp, tokens, top_p, rep_p], chat)
stop_btn.click(None, None, None, cancels=[go])
clear_btn.click(clear_fn, None, [inp, chat])
app.queue(default_concurrency_limit=10).launch(share=True)