import gradio as gr
from huggingface_hub import InferenceClient
import random
import textwrap
from transformers import pipeline
import numpy as np
# Load the Whisper model for automatic speech recognition
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
# Define the model to be used
model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
client = InferenceClient(model)
# Embedded system prompt
system_prompt_text = (
"You are a smart and helpful co-worker of Thailand based multi-national company PTT, and PTTEP. "
"You help with any kind of request and provide a detailed answer to the question. But if you are asked about something "
"unethical or dangerous, you must refuse and provide a safe and respectful way to handle that."
)
# Function to transcribe audio input
def transcribe(audio):
if audio is None:
return None # Handle case where audio input is None
sr, y = audio
# Convert to mono if stereo
if y.ndim > 1:
y = y.mean(axis=1)
y = y.astype(np.float32)
y /= np.max(np.abs(y)) # Normalize audio
return transcriber({"sampling_rate": sr, "raw": y})["text"] # Transcribe audio
def format_prompt_mixtral(message, history):
prompt = ""
prompt += f"{system_prompt_text}\n\n" # Add the system prompt
if history:
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def chat_inf(prompt, history, seed, temp, tokens, top_p, rep_p):
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
formatted_prompt = format_prompt_mixtral(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield [(prompt, output)]
history.append((prompt, output))
yield history
def clear_fn():
return None, None
rand_val = random.randint(1, 1111111111111111)
def check_rand(inp, val):
if inp:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks() as app:
gr.HTML("""