Mattral's picture
Upload 3 files
e5d1fd9 verified
raw
history blame
2.04 kB
import streamlit as st
import numpy as np
from PIL import Image
from tensorflow.keras.models import load_model
from streamlit_drawable_canvas import st_canvas
# Function to preprocess the image
def preprocess_image(image, target_size):
if image.mode != "RGB":
image = image.convert("RGB")
image = image.resize(target_size)
image = np.expand_dims(image, axis=0)
return image
# Function to predict the digit
def predict_digit(model, image):
processed_image = preprocess_image(image, (200, 200)) # Match your model's input size
prediction = model.predict(processed_image)
return np.argmax(prediction), np.max(prediction)
# Load your trained model
model = load_model("last_burmese_Digit_recognizer_model.h5")
# Streamlit app
st.title("Burmese Digit Recognizer")
# Upload image file or draw
st.markdown("## Upload an Image or Draw")
col1, col2 = st.columns(2)
with col1:
file = st.file_uploader("Upload Here", type=['png', 'jpg', 'jpeg'])
with col2:
# Drawable canvas
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.3)", # Drawing parameters
stroke_width=3,
stroke_color="#ffffff",
background_color="#000000",
background_image=None if file else st.session_state.get("background", None),
update_streamlit=True,
width=400,
height=400,
drawing_mode="freedraw",
key="canvas",
)
image = None # Initialize image variable
# Process uploaded image or drawing
if file is not None:
image = Image.open(file) # Read image with PIL
elif canvas_result.image_data is not None:
image = Image.fromarray(np.array(canvas_result.image_data, dtype=np.uint8)).convert('RGB')
if image is not None:
st.image(image, caption='Uploaded Image') # Display the uploaded/drawn image
# Predict the digit
digit, confidence = predict_digit(model, image)
st.write(f"Predicted Digit: {digit} with confidence {confidence:.2f}")
else:
st.write("Please upload an image or use the canvas to draw.")